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Abstract

Currently active database systems (ADBMSs) are principally conceived as rather tightly
integrated software systems. They are either realized as a part of monolithic DBMSs,
or the active database mechanisms are provided as a layer that resides on top of tra-
ditional DBMSs. As these modules still can be coupled tightly with the underlying
DBMS, the latter approach does not ensure that the respective modules are adapted
easily to other DBMSs.

Providing active database mechanisms as individual and customizable database
services would therefore open the opportunity to use them in a variety of ways and en-
vironments. In that sense, this thesis investigates in the systematic provision of sophis-
ticated active mechanisms in database or database-related environments and proposes
an engineering approach to construct active database systems in a cost-effective way.

In a first stage the basic concepts of active database management systems as well
as the foundations of (Active) DBMS construction are discussed. These investigations
enable the conclusion that the principal approach to be devised in this thesis relies best
on decomposing ADBMSs into reusable components that are recombined later on into
specific active database services.

In a next step concise meta models to describe the software components and soft-
ware architectures are elaborated, followed by the definition of specific reuse-oriented
software processes to take ADBMSs apart into components and to build active database
services out of these components. Subsequently a reference architecture underlying
the prospective active database services is devised by applying specialized architec-
ture design techniques. The reference architecture is specified formally by means of
an architecture definition language.

Techniques to transform the reference architecture into actual software components
are conceived afterwards. The procedure consists of a method to specify components
in an implementation-independent way, a technique to generalize them systematically
and a process to develop the components with a chosen component infrastructure. In
order to recombine the components into a coherent ensemble a method to specify the
prospective active database service is devised as well as a schema to classify compo-
nents and specific tools that assist the software engineer in the assembly of an active
database service.

Finally, a prototype has been implemented as a proof of concept.
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Zusammenfassung

Heutige Ans̈atze aktiver Datenbanksysteme (ADBMSe) basieren auf dem Prinzip, dass
die aktive Funktionaliẗat ein Teil der DBMS Funktionalität selbst ist. Die aktiven
Mechanismen wurden deshalb typischerweise als integraler Bestandteil eines DBMS
konzipiert, so dass sie nur in Zusammenhang mit einem konkreten DBMS benutzt
werden k̈onnen. Gelegentlich wurden auch ADBMSe im sog. “Schichtenansatz” en-
twickelt, einem Vorgehen bei dem die aktiven Mechanismen modular auf einem ex-
istierenden passiven DBMS aufgesetzt werden. Auch in diesem Fall ist die Wiederver-
wendung der aktiven Komponenten in der Praxis recht eingeschränkt, da sie diesel-
ben DBMS-Schnittstellen verwenden die auch jeder “gewöhnlichen” Applikation zur
Verfügung steht.

Die Realisierung von aktiven Datenbankmechanismen als eigenständige, adaptier-
bare Datenbankdienste würde es nun erm̈oglichen diese in einer Vielzahl von ver-
schieden Umgebungen zu verwenden. In diesem Sinne untersucht die vorliegende
Arbeit, in welcher Form komplexe aktive Mechanismen für Datenbanksysteme sowie
verwandte Bereiche systematisch konstruiert werden können. Dabei wird ein Ver-
fahren zur kosteneffektiven Realisierung solcher Systeme vorgeschlagen.

In einem ersten Teil werden die Konzepte aktiver Datenbanktechnologie sowie der
Konstruktion von Datenbanksystemen analysiert. Daraus wird gefolgert, dass hier der
zu entwickelnde Ansatz am zweckmässigsten als Komponentensoftware zu konzip-
ieren ist. Grunds̈atzlich werden dabei zuerst die ADBMSe in wiederverwendbare
Komponenten zergliedert, so dass diese in der Folge zu spezifischen aktiven Daten-
bankdiensten zusammengefügt werden k̈onnen.

In einem folgenden Schritt werden einerseits Metamodelle zur präzisen Defini-
tion von Softwarekomponenten und -architekturen ausgearbeitet. Andererseits wer-
den spezifische Prozesse zur Zergliederung aktiver Datenbanksysteme in wiederver-
wendbare Softwarebausteine sowie deren Komposition in kohärente Datenbankdienste
definiert. Anschliessend wird eine Referenzarchitektur, welche den zukünftigen aktive
Datenbankdiensten zugrunde liegt, entworfen und mittels einer Architekturdefinition-
ssprache formal spezifiziert.

In der Folge werden Techniken entwickelt, um die in der Referenzarchitektur iden-
tifizierten Komponenten (und Subkomponenten) als konkrete Softwarebausteine zu
realisieren. Das Verfahren besteht aus einer Methode um die Komponenten in einer
technologieunabḧangigen aber implementierungsnahen Form zu spezifizieren, einem
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Verfahren um sie systematisch zu generalisieren sowie einem Prozess um die Bausteine
mittels einer gegebenen Komponenteninfrastruktur zu implementieren.

Zur eigentlichen Konstruktion der aktiven Datenbankdienste werden einerseits eine
Methode zur Spezifikation des jeweiligen Systems und ein Schema zur Klassifikation
der Komponenten entwickelt. Andererseits werden verschiedene Werkzeuge zur Un-
tersẗutzung des Konstruktionsprozesses vorgeschlagen.

Schliesslich wurde ein Prototyp zur Validierung der vorgeschlagenen Konzepte im-
plementiert.
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Chapter 1

Introduction

Active database management systems (ADBMS) support, beyond the traditional func-
tionality of database management systems (DBMS), the monitoring of specific situa-
tions and react automatically in predefined ways when they occur. In the last 15 years,
considerable effort has been spent towards understanding ADBMSs and many different
approaches have been proposed (for a comprehensive overview see [WC96, Pat98]).
However, the richness of these proposals – incorporating features like the monitoring
of complex events, various transaction coupling or event consumption modes etc. –
contrasts to such an extent with the rather restricted active functionality offered by
current commercial DBMSs that one can argue that research in this subject has had
little impact on practice. Even though there are important problems which are far
from being solved (e.g., concurrency and recovery in the context of active rules, per-
formance of rule processing, methodologies for designing active rulebases and active
database applications etc.), we consider the following reasons as decisive why the pro-
vision of advanced active database mechanisms has in no way become a topic in the
commercial software development.

On the one hand, the absence of industrial-strength ADBMS prototypes results in
a lack of comprehensive applications that demonstrate the benefits of active database
technology to a broader audience. Consequently, there is still little demand for active
database functionality. On the other hand, database management systems – sometimes
referred to as “the last major preserve of monolithic closed design” [Vas94] – tend to be
loaded with more and more features, implying that these systems grow in complexity
and size. This trend obviously leads directly to higher software development costs due
to the expanding engineering teams and the increasing testing requirements. In fact, the
economy of scale of large, capital-intensive software products is usually quite small,
suggesting that DBMS manufacturers might be rather reluctant to commit resources in
order to incorporate novel and still somewhat exotic features like active functionality.

The commercial provision of advanced active database mechanisms is furthermore
aggravated by the limited standardization of the rule models or languages proposed
in various research projects. Even though there is principal conceptual agreement
in a number of areas (cf. [DGG95]), there is still little consensus among the sys-
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tems. The disagreements are usually attributed to the fact that a choice must be made
among a number of reasonable alternatives and each alternative seems to be appro-
priate for certain scenarios [WC96]. Regarding the rapid evolution in the information
systems scenery and its impact on database technology, it is conceivable that this di-
versity remains an inherent characteristic of active database technology, implying the
impossibility to develop all-round, “one size fits all” active database systems. Instead,
ADBMSs must be realized in a way that allows them easily to cope with new and
unforeseen requirements.

Hence, it makes sense to investigate thecost-effectiveprovision ofcustomizable,
advanced active database mechanisms. Following a general direction that database re-
search is about to take, namely to provide individual database management services
that can be used and combined in a variety of ways and in a variety of environments
[Vas94, Bla96, GD94c, GD98], we propose the provision of active database mecha-
nisms as anindividualandcustomizabledatabase service [GKvBF98] that is applicable
to arbitrary DBMSs. Customizing an active database service implies that the applica-
tion engineers can choose among alternative knowledge and rule execution models,
and that they can adapt the service for specific application profiles. However, the cost-
effective provision of such customizable active database services is a complex task and
requires sophisticated construction methods.

1.1 Challenges

Designing a customizable active database service that is applicable for arbitrary DBMSs
is different from the development of a specific ADBMS. The important distinction is
that the active database service has to cover all relevant concepts in the domain of ac-
tive database technology, whereas a distinct ADBMS is outlined up front to implement
a specific concept.

One must principally combine a variety of approaches to furnish active database
behavior into a coherent ensemble that enables the methodical construction of special-
ized active database services. Thereby one faces a number of challenges.

• Consolidate the variety of ADBMSs. Determine what kind of active database
behavior shall be provided and which variants shall be included to cover a rea-
sonable spectrum of active database technology.

• Establish a conception of a configurable active database service. Identify which
aspects of the prospective system are fixed (i.e., occur in all installations) and
which are variable, i.e, appear only in specific instances. These decisions imply
the design of an appropriate system architecture.

• Identify the technological approach to implement the system. One must clarify
whether generation or configuration shall be used to build an active database
service. Furthermore it is mandatory to acquire a conception of the components
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that form a system, e.g., whether they result from a module library or an object-
oriented class framework.

• Determine proper procedures. Without assistance, beginning with the analy-
sis phase, an expedient – let alone a cost-effective one – construction of active
database services is rather unlikely. Thus a productive design activity must be
guided by adequate process models.

Finding an answer for each of these issues is not the main challenge, however complex
the individual solutions might be. Recall that the most difficult work of software devel-
opment is not representing the concepts faithfully in a specific computer programming
language (i.e., coding) or checking the fidelity of that representation (testing). These
activities are accidental parts of software development. Instead, the essence of soft-
ware development – and the main challenge of this thesis – consists of working out
the specification, design and verification of a highly precise and richly detailed set of
interlocking concepts [Bro87].

1.2 Outline of the Thesis

This thesis investigates in the systematic provision of sophisticated active mechanisms
in database or database-related environments and proposes an engineering approach
– named FRAMBOISE1 [FGD98] – to construct active database systems in a cost-
effective way. The conception of FRAMBOISE is the central theme of the thesis which
is organized as follows: Chapter 2 sketches the basic concepts of active database man-
agement systems. Chapter 3 discusses the foundations of (Active) DBMS construc-
tion and elaborates the principal concepts of FRAMBOISE that guide the subsequent
investigations. Chapter 4 elaborates concise meta models to describe the software
components and architectures that underly FRAMBOISE. Chapter 5 defines specific
reuse-oriented software processes to decompose ADBMSs into reusable components
and to recombine them into active database services. Chapter 6 develops the reference
architecture of the active database service which is specified formally by means of
an architecture definition language. The procedure according to which reusable soft-
ware components are developed in FRAMBOISE is presented in Chapter 7, whereas
the ADBMS-specific facilities to assemble a specific active database service are intro-
duced in Chapter 8. Finally, Chapter 9 evaluates the achievements of FRAMBOISE
and Chapter 10 concludes the thesis.

1.3 Summary of Thesis Contributions

There is no comprehensive construction theory in the domain of active database tech-
nology. Thus contributing a detailed elaboration of the construction system FRAM-

1aFRAM ework using oBject-OrIented technology forSupplying active mEchanisms
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BOISE that conceives the provision of active database facilities as a software engi-
neering process and addresses all relevant phases for the construction is new to this
field.

FRAMBOISE enables on the one hand the construction of active database services
that interoperate with commercially available, mostly passive, database management
systems. These constructs are an effective complement of the trigger facilities or pro-
prietary event notification/detection mechanisms as they are provided by nowadays
DBMSs. It is therefore feasible to realize rather comprehensive active database appli-
cations.

FRAMBOISE is, however, not exclusively devised to provide active database mech-
anisms for nowadays still rather monolithically conceived DBMSs. Instead it is fea-
sible to combine FRAMBOISE with a broad range of novel approaches to implement
DBMSs, i.e., the so-calledComponent DBMSs(CDBMSs) which have a componen-
tized architecture and allow users to add components.

This leads to the second set of contributions. In order to devise FRAMBOISE, the
thesis demonstrates a systematic procedure to work out a precise and detailed set of in-
terlocking concepts to specify, design, verify and classify software architectures, com-
ponents and their ingredients at various levels of abstraction. As a result FRAMBOISE
represents a full-fledgedcomponent framework[Szy97] to furnish active database sys-
tems as CDBMSs. Recalling that it is sometimes argued that component software did
not cause a stir in the halls of academia [Mau00] and that component frameworks situ-
ated outside the domain of graphical user interface building are still rare [Szy97], this
thesis contributes also to the discipline of component based software engineering.
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Chapter 2

Active Database Management Systems

Traditional database systems are passive in the sense that they perform operations on
the database exclusively on specific (DBMS-) external requests. Active database man-
agement systems support, beyond the traditional functionality of database management
systems, the monitoring of specific situations and react automatically in predefined
ways when they occur. In the last 15 years, considerable effort has been spent towards
understanding ADBMSs and many different approaches have been proposed (for a
comprehensive overview see [WC96, Pat98]).

This chapter gives a brief survey of the domain of active database technology in
order to introduce the proper terminology for the investigations performed in the re-
mainder of the thesis. In Section 2.1 the principal approaches tospecifyand in Section
2.2 the methods toexecute(re) active behavior are sketched. Subsequently, in Section
2.3 applications of active database systems and in Section 2.4 the principle approaches
to provide ADBMSs are discussed. Finally, Section 2.5 concludes the chapter.

2.1 Specification of Reactive Behavior

The reactive behavior of an ADBMS is specified by means of rules that describe the
situations to be monitored and the reactions of the system when these situations are
encountered. In its general form, rules consist of an event, a condition and an action.
Such kind of rules are calledECA (Event/Condition/Action)-ruleswhereby the event
and the condition define the respective situation to be monitored. An event is an in-
stantaneous occurrence to which the active database system must react. Events are
considered to have no duration, hence they exist as an instant in time.

When an event occurs, the corresponding rules aretriggered. The rule action is
subsequently executed if the condition holds. In other words, the action contains
the operations to be performedwhenthe event occurred andif the condition holds.
So-calledrule definition languages(RDL) provide constructs to specify rules. These
RDLs are specific to the respective ADBMS and may therefore vary considerably.
In the domain of relational DBMSs established the SQL99 standard [SQL99] among
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other things a norm for triggers, whereas these triggers are rather conceived as a mini-
mal subset of ECA rules.

Rules, events, conditions and actions are usually named entities. These names are
unique identifiers which may be either manually defined using the rule language or
automatically assigned by the active DBMS when rules are stored into the so-called
rulebase.

We give as example a trading rule from a portfolio management application that
monitors and reacts to stock fluctuations, The syntax of this example is derived from
the language of the object-oriented ADBMS SAMOS [Gat94].

DEFINE RULE LowRisk
ON stock.UpdatePrice
IF (stock.policy = low_risk) and

(stock.price < stock.initprice * e)
DO stock.Sell

Assuming0 < e < 1, the ruleLowRisk ensures that each timewhena stock
price is updated, the bank sells the stocksif the stock price decreases with more than
(1 − e) ∗ 100 percent and the stock policy islow_risk ,. The event to be moni-
tored is the update of the stock price, named asstock.UpdatePrice and defined
separately from the rule definition. The condition checks if the policy islow_risk
(stock.policy = low_risk) and if the stock price already has decreased un-
der a given threshold (stock.price< stock.initprice∗e). If the condition holds then the
actionstock.Sell is executed.

Note that some ADBMSs allow only EA (Event/Action)- or CA (Condition/Ac-
tion)- rules, i.e., the condition or the event may be either implicit or missing. EA-rules
are actually special cases of ECA-rules where the condition always holds. CA-rules are
more complex because they imply different semantics to rule processing. In contrast
to ECA-rules, where conditions are evaluated only at certain points in time (i.e., when
events occur), conditions of CA-rules have to be evaluated continuously.

The elements of rule definitions will be discussed in greater detail, beginning with
event definitions (Sec. 2.1.1), proceeding with condition and action definitions (Sec.
2.1.2) end ending with rule execution constraints (Sec. 2.1.3).

2.1.1 Events

An event is a relevant happening that has to be monitored by the active DBMS. It has
to be distinguished between the description of an event (also called event definition or
specification) and its occurrences. In analogy to programming languages, the former
notion corresponds to a type definition whereas the latter represents instances of the
defined type.

The design of languages to specify precisely when and under which circumstances
rules should be triggered has been important to most of the recent work on ADBMSs.
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The two most fundamental event categories are addressed asprimitive andcomposite
events. The former category summarizes events described by atomic occurrences while
the latter consist of the (nested) composition of primitive or composite events that are
combined through specific operators. Early work on composite event detection was
done in the HiPAC project [CBB+88]. A range of active OODBs refined and extended
the early results [GJS92, GD94a, CKAK94, CFPT96].

Primitive Events

Primitive events are classified with regard to their origin asinternal andexternal. In-
ternal events are associated with the access to the database. Examples are:

• data operation eventsoccur at the beginning or at the end of a data operation.
Thus, the event definition has to specify whether the instances have to occur
BEFORE or AFTER the operation has been performed. In relational database
systems these may be SQL modification operations, (i.e.,insert, update,
delete ), or the retrieval operationselect , applied on a certain table. In
object-oriented database systems, data operations are performed through the in-
vocation of methods that access persistent collections of objects. Therefore,
data operation events include the notion ofmethod events. Method events may
be signalled when persistent objects are created (i.e., the constructor of a class is
called) or deleted (i.e., the destructor is called) or when methods modifying or
retrieving persistent objects are invoked. For example, let a classPerson have a
methodModifySalary(x:Integer) , then the corresponding method event
definition is:

DEFINE EVENT UpdateSalary

BEFORE Person.ModifySalary(x:Integer)

The eventUpdateSalary is signalled just before the methodModifySalary
of classPerson is invoked.

• transaction eventsoccur before or after a transaction operation (begin, abort,
commit). For example, the eventTrans in the following definition is signalled
each time the execution of a transaction begins:

DEFINE EVENT Trans BOT

External events are produced by occurrences outside the database, in its environ-
ment. The most prominent event types are:

• time/temporal eventsthat occur either at absolute time points, e.g.,
ON 13.06.98. or periodically, e.g.,ON EVERY 3 DAY 18:00.

• abstract or user-defined eventsthat arise explicitly within application programs
or rule actions. For example, an abstract event defined by
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DEFINE EVENT abstract1 can be explicitly signalled with a command
like RAISE EVENT abstract1 .

• method eventsthat are not associated with database changes, occurring at the
beginning or at the end of invocations of methods applied on transient objects
(i.e., outside the database). For example, an event is raised when a water con-
trolling system signals a change of the water-level. Note that actually the kind of
the underlying data model, e.g., relational or object-oriented, determines if the
event is defined as a method or operation event.

Composite Events

Primitive events describe elementary occurrences. In order to express more semantics,
composite events have been introduced. They are specified by associating thecompo-
nent events(or constituent events) by means of specific operators. Component events
can be either primitive or composite events. Typical operators to combine events are:

• Logical operators.Events can be combined using boolean operators likeAND,
OR, etc.

• Sequence.A rule can be triggered when two or more events occur in a particular
order.

• Temporal composition.A rule might be triggered by a combination of temporal
and non-temporal events such as “1 minute after event E” or “ every hour after the
first occurrence of event E”. Temporal composition includes alsointerval-based
operatorsthat enable the declaration of time intervals (addressed asmonitoring
intervals) during which specific event occurrences are considered. For instance
[1500 - 1600] E3 means that an occurrence of E3 is only signalled be-
tween 3PM and 4 PM.

• Reductions.Several occurrences of the same event might be signalled only once
or a specific number of times. Typical operators areclosurethat signals only the
first occurrence,history (or times) that signals every nth occurrence of an event
and as a special case thenegationwhen an event has not occurred in a specific
interval of time.

The specification of a monitoring interval is mandatory for negations in order to
indicate during which period of time the event must not occur. It is, however,
conceivable to define a closure without indicating such an interval in order to
signal only the very first occurrence.

Quite complex composite events can be defined if an event specification language is
based on regular expressions or a context-free grammar. In some systems, the prece-
dence order of operators has to be always specified (e.g., using brackets similar to
SAMOS [Gat94]). Another alternative is to provide a predefined order, like in logical
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expressions (e.g., conjunction has priority over disjunction, etc.). In this case, a de-
sired order (other than default) may be enforced using brackets. In order to make event
specification more precise, event parameter restrictions may be defined as well. They
establish whether all component events are signalled for the same object, transaction
or user, etc. For example, the event definitione1 SEQ e2: SAME TRANSACTION
occurs only if e1 and e2 occurred in this order during the same transaction.

Some rule languages like ORCA [Wei96], and Ode [GJ91] shift a part of (or in the
case of Ode the entire) selective function of the condition to the event. The aim is to
avoid unnecessary rule triggering. For example, ORCA provides the event specifica-
tion with a where part:

ON UPDATE TO employee.salary
WHERE age < 30 and salary > 4000

Here theWHEREclause is considered as a part of the event definition instead of being
a condition.

Event Parameters

Event parameters establish the connection between the database state at the point in
time when an event occurs and the rule behavior by passing information about the
actual database state to the condition and action. There are two kinds of parameters:
fixed and variable.

Fixed parametersare automatically produced by the system:

• timestampis the time point assigned by the system to the event occurrence,

• oid represents the object identifier of the object for which a method is called or
a specific tuple of an object-relational database,

• trans id is the identifier of thetriggering transaction(i.e., the transaction during
which the event has occurred),

• user id is the identifier of the user who started the transaction in which the event
has occurred.

The last three parameters are usually only meaningful for primitive events because the
components of composite events may originate from different objects, transactions or
users objects and therefore have no commonoid , trans_id or user_id . It is
however possible to restrict the components of complex events on the same object,
transaction or user so that the definition of the corresponding event is feasible.

Variable parametersare parameters that have to be defined during rule specifi-
cation. Usually, they depend on the event type. For example, method events have the
parameters of the method they are defined on. With few exceptions (e.g., disjunctions),
composite events are attributed with all parameters of their components [Gat94].
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The syntax of rule languages may be extended with special keywords to query a
state of the database prior to the current one. Such keywords may beinserted ,
deleted , updated , old , current . When used in conditions and actions these
keywords address the state of the database before insertion, deletion or modification.
For example, existing systems support the query of the state before the execution of
the actual transaction (e.g., Chimera [CFPT96]), the state after the last evaluation of
the rule (e.g., Chimera, Starburst [WCL91]) or the state before the occurrence of the
rule event (e.g., Oracle [Ora92], POSTGRES [SK91], NAOS [CCS94]).

2.1.2 Conditions and Actions

Conditions specify what has to be checked in order to ensure whether the action of a
triggered rule is executed at all. If the result of the condition evaluation istrue , the
condition issatisfied. A condition may be:

• a database query. The condition might be simply specified as a query, using the
database system’s query language. For example, in relational database systems
a condition may be anything corresponding to an SQLWHEREclause. A con-
dition evaluates totrue if the query produces a non-empty set and tofalse
otherwise. The result of the query may be passed on to the action.

Some systems restrict the expressiveness of conditions for reasons of perfor-
mance. In this case, the predicate may be defined by only using a restricted
query language. For example, comparison operations are allowed but aggregate
functions and joins are not.

• one or more application procedure calls or method invocations. Boolean proce-
dures or methods may be conditions as well. Similar to queries, procedures or
methods may also return sets of data.

Theactionspecifies the reactive behavior of a given rule. Actions principally may
perform arbitrary operations, such as data modification and retrieval in the database,
transaction operations likecommit or abort , method invocations (in object-oriented
DBMSs), procedure calls and rule operations.

The flexibility in the specification of actions and conditions depends on the used
language which is also referred to ascondition/actionlanguage. Usually the DML of
the underlying DBMS is used. Examples of condition/action languages range from
specialized database languages (e.g., SQL for Starburst [WCL91], POSTQUEL for
POSTGRES [SK91] and Ariel [Han96]) to general-purpose programming languages
with persistent extension (e.g., O++ for Ode [GJ91], Smalltalk for HiPAC [CBB+88]
or a persistent extensions of C++ for SAMOS [Gat94]). A rule language obviously
improves its expressive power if the applied condition/action language tends towards a
general purpose programming language. In this case, not only sequence and selection
are supported, but also programming constructs such as abstraction and iteration. This
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allows conditions to contain any procedure or method invocation that returns a boolean
value and actions to include any executable program. In this case, conditions and
actions are more complex than those specified using simple rule languages based on
database languages.

2.1.3 Execution Constraints

Some rule languages allow the specification of execution constraints such as priorities
and coupling modes. Furthermore rule execution can be constrained byenablingand
disabling(also called activate and deactivate) rules in order to ”switch” them temporar-
ily on or off respectively. Disabled rules remain in the system but cannot be triggered
or selected for execution.

Rule operations may be used in rule definitions in order to perform the rule ma-
nipulation. For example, within the action part of a rule, another rule may be en-
abled/disabled, and so on.

2.2 Rule Execution

A so-calledexecution modelspecifies how rules are treated at run time. Even though
the details of an ADBMS’ execution model are closely related to system specific as-
pects such as the data model or the transaction manager, rule execution can be subdi-
vided into a number of steps that basically apply for all ADBMSs [Pat98]. These steps
are depicted in Figure 2.1 and will be discussed in the subsequent paragraphs.

2.2.1 Event Signalling

When primitive eventsoccur in an event source, they aredetectedby the associated
primitive event detector. Acomposite event detectorchecks whether the primitive
event occurrences contribute to composite events. The composite event detection is
carried out until the composite event detector reaches a final state and no more compos-
ite events can be detected. Existing work proposes different techniques for composite
event detection: extended finite state machines (Ode, [GJS92]), event graphs (Sen-
tinel [CKAK94], NAOS [CC96]) and colored Petri Nets (SAMOS [GD94b]). New
approaches deal with distributed concurrent detection models [TGD97]. The result
of detection is thesignalling of events which means that timestamps are assigned to
events and the active system is informed about event occurrences. Various alternatives
exist to calculate the timestamps:

• The system assigns unique timestamps to events. Even if physical events oc-
cur simultaneously, the system registers them at different points in time. Thus,
only one event is signalled at a point in time. Primitive events are principally
timestamped before simultaneously occurring composite events.
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Figure 2.1: Principal steps which take place during rule execution [Pat98]
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• Multiple primitive events can get the same timestamp if they occur simultane-
ously. Composite events get the timestamp of the last occurred constituent
event(s). Inherently, there may be (primitive and composite) events with the
same timestamp.

Combinations of these variants are possible. For example, primitive events have
unique timestamps but composite have the same timestamp as the last occurred prim-
itive. The option chosen for timestamp assignment plays an important role for rule
processing because it establishes the order in which rules are triggered (cf Sec. 2.2.2)
which in turn influences the selection order of rule execution (cf. Sec. 2.2.3).

Theevent consumption mode[CKAK94, FT95] determines whether events retain
their capability to participate in rule triggering after their associated rules have been
processed and at which point in time they lose this capability (i.e., events are con-
sumed). There are basically two alternatives:

• Event consumption is performed in relation to rule triggering. Primitive events
are consumed when their rules are triggered. [CKAK94] identifies four choices
for the consumption of constituent events:recent(e.g., ACOOD [BL93]),chron-
icle (e.g. SAMOS [Gat94]),continuous(e.g., NAOS [CC96]) andcumulative.
The most prominent option is chronicle, i.e., for the detection of a composite
event, the oldest eligible occurrence of each constituent event is considered. A
specific event occurrence may participate in one or more composite events. After
a composite event occurred and the appropriate rule is triggered, the constituent
event occurrences are consumed. This is not necessarily the case for recent
and continuous consumption where some constituent event occurrences may be
reused for the detection of further composite events. In contrast, cumulative
consumption requires the accumulation of the occurrences of constituent events
until all necessary constituent events have occurred. Then, the composite event
is detected and all occurrences (including the accumulated ones) are consumed.

• Consumption is only affected by condition evaluation. According to [FT95],
rule events remain ”pending” as long as conditions are false (e.g., Ariel [Han96]
and NAOS [CCS94]). The events are subsequently consumed when conditions
hold.

All event occurrences are registered in theevent history(or event log), which is a
list sorted according to timestamps. The history begins as soon as the first event type
is defined. The history usually lasts over many sessions and over several transactions.
Its purpose is to support composite event detection (which relies on past event occur-
rences), to enable recovery in the case of a failure and to keep a record of all event
occurrences for later analysis.
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2.2.2 Rule Triggering

Once the event occurrences are signalled the ADBMStriggers the rules defined for
the respective events. The association of a rule with its event occurrence forms a
rule instantiation. The nature of the relationship between events and the rules they
trigger is partially captured by thetransition granularity. This indicates whether the
relationship between event occurrences and rule instantiations is 1:1 or many:1. The
transition granularitytuple implies that a single event occurrence triggers a single rule
(e.g. updating a set of tuples in a relational DBMS will trigger a rule for each modified
tuple). The transition granularityset implies that a collection of event occurrences
triggers a single rule (e.g., deleting a set of tuples triggers one rule instance).

Another feature that influences the relationship between event occurrences and the
rules they trigger is thenet effect policy, which indicates whether the net effect of the
update events rather than each individual event occurrence shall be considered. For
example, creating a tuple in a relational DBMS and modifying the tuple immediately
afterwards can be considered as identical to the creation of the modified tuple. Net
effect policies are not generally meaningful when rules are processed immediately,
because the event occurrences must beforehand be collected in order to determine
the net effect. Specification of net effects is for instance supported in the ADBMSs
Starburst [WCL91], Chimera [CFPT96], Ariel [Han96] and A-RDL [WC96].

2.2.3 Rule Scheduling

The scheduling phase of rule execution determines what happens when several rules
are triggered at the same time. Active database systems that have to cope with large
quantities of data efficiently in a context where deterministic behaviour is highly de-
sirable, usually select the next rule to be fired by means of static rule priorities. The
priority of a rule specifies the execution order of a rule in relation to other simulta-
neously triggered rules. Priorities may be absolute or relative. In the former case,
absolute values are attributed for each rule to impose an execution order on the rules.
In the latter case, priorities specify ordering for pairs of rules. Rule instantiations that
have the same priority are grouped to so-calledrule conflict sets. Hence there remains
the task to select the rule instances in a conflict set, which is referred to asconflict
resolution. In ADBMSs there are basically two approaches to resolve conflicts:

• deterministicconflict resolution, which is applicable if a total order among rules
exist. Rules are for example chosen for execution based on their timestamps or
on static properties such as the time of rule creation etc.

• nondeterministicconflict resolution is applied if only a partial order is given or
no ordering exists at all. In that case rule instantiations are chosen arbitrarily.

The second issue of the scheduling phase is the number of rules to be fired. The
following options are typically found in ADBMSs:
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• Firing all rule instantiations of a conflict setsequentially. This approach is usu-
ally applied for rules supporting integrity maintenance.

• Firing all rule instantiations of a conflict set inparallel in order to enable more
efficient rule processing. In that case no conflict resolution takes place. This
method demands sophisticated concurrency control mechanisms in order to pre-
vent that rule instantiations interfere with each other. For instance, concurrent
threads in the same triggering transaction that stem from parallel rule execution
require some kind of subtransactions.

• Firing all instantiations of a specific rule before any other rules are considered.
This approach is preferably used in the domain of expert systems but is also
conceivable for specific ADBMS applications.

After scheduling the rule instantiations, rule evaluation and execution takes place.

2.2.4 Rule Evaluation and Execution

In theevaluationphase the conditions of the triggered rules are evaluated. If the con-
dition holds, the rule fires and may be executed in the rule execution phase.Rule
execution, sometimes calledrule firing, represents the phase where the action of the
selected rule is executed.

Rule execution – and in some systems also rule evaluation (e.g., the invocation of
a method in an object-oriented ADBMS) – can lead to the signalling of further event
occurrences which in turn trigger subsequent rules. This is addressed ascascadedrule
firing.

Depending on theatomicityof conditions and actions [FT95] the evaluation of a
condition, respectively the execution of an action, are eitheratomicor interruptable.
In the latter case the respective operation can be suspended in order to process other
eventually triggered rules. Atomic rule execution implies that the current condition
evaluation or action execution must terminate before further rule instantiations may be
processed. The atomicity of conditions and actions constrains the so-calledcycle pol-
icy [WC96, Pat98] which determines how cascaded rule firing is treated. Arecursive
cycle policyimplies that the current action execution (or condition evaluation) is sus-
pended in order to process the rule cascade spawned by this operation, i.e this cascade
overrules the actual conflict set. Obviously a recursive cycle policy requires interrupt-
able actions and conditions. Aniterative cycle policymeans that rules instantiations
triggered in a cascade are simply added to the conflict set without interrupting the cur-
rent operation and are later on scheduled for processing as any other rule instantiation.
Atomic condition evaluation and action execution imply an iterative cycle policy. Note
that the outcome of rule processing with an iterative cycle policy is different from that
of a recursive cycle policy relying on interruptable operations.
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2.2.5 Coupling Modes

The phases of rule execution discussed so far are not necessarily executed contigu-
ously but depend on the so-calledcoupling modes[Day88] which are pairs of values
(x, y) associated with each rule. The valuex couples event signalling and condition
evaluation of a rule whereasy couples condition evaluation and action execution. The
coupling modes specify the processing of a rule along the two dimensions,time and
transaction, i.e.,(x, y) describes the time and/or transaction relationship between a
rule event and the evaluation of a rule condition, respectively between the evaluation of
a condition and the execution of an action. Possible coupling modes areimmediate ,
deferred anddecoupled [FT95].

• immediatecoupling. The condition is evaluated as soon as the operation that
produced the triggering event(s) terminates. The same applies to the second
coupling mode. In particular, the action is immediately executed after the con-
dition evaluation. The exact point in time depends on what is considered to be
”noninterruptable update unit”: operation, method call, etc.immediate also
means that the condition evaluation or the action execution are performed within
the same transaction as the previous step (i.e., event triggering, respectively con-
dition evaluation). This implies that an abort caused by the rule produces an
abort of the transaction.

• deferred coupling. The evaluation of the condition and/or the execution of the
action are delayed until some other occurrence,usually the attempt of the transac-
tion to commit, takes place. There are also approaches that delay rule processing
until specificrule assertion pointsare signalled.

• decoupledcoupling (also called detached). The evaluation of the condition, re-
spectively the execution of the action takes place in a separate transaction related
to the event, respectively to the condition. In this case, the condition evaluation
and action execution are not under the responsibility of the active part of the
system, but are part of the concurrency control system of the underlying DBMS.
The decoupled mode can be subdivided intodependentandindependentdecou-
pled. In the former case, the separate transaction is only started when the orig-
inal transaction commits, in the latter, it is started independently of the original
transaction.

2.3 Applications of ADBMSs

The notion ofpassive database applicationsrefers to applications that do not make use
of any active features even though the underlying DBMS might offer them.Active ap-
plicationsare not only based on DBMSs with active capabilities, but make actually use
of these capabilities [SKD95]. Active applications can be classified into the following
categories [PD98]:
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• Database System Extensions. Active database mechanisms are applied to pro-
vide other facilities of a DBMS. For example, ECA rules have been used to sup-
port integrity constraints, materialized views, transaction models, version man-
agement etc.

• Closed Database Applications. This category includes the use of active database
functionality to implement application related tasks without actually referring to
external devices or systems. Hence closed database applications rely exclusively
on database and complex events whereby the condition/action language is an
extension of the respective DML.

• Open Database Applicationsuse the ADBMS in conjunction with monitoring
devices to record and respond to situations outside the database. This category
forms a superset of closed database applications.

The range of active applications that can be provided by a specific ADBMS directly
depends from theexpressivenessof its rule language, i.e., the variety and number of
supported constructs as well as the number of elements and constructs provided by the
condition/action language. Experience has shown [KDS98] that an ADBMS should
includes at least composite operators, coupling modes and rule operations as well as a
condition/action language that provides all elements of a general purpose programming
language in order to be considered as expressive.

Depending on the complexity of a given application, the design of a rulebase may
evolve into a complex development activity. ADBMSs should therefore provide mech-
anisms and tools to support rule development such as RDL compilers, specialized ed-
itors and browsers etc.

A challenging problem in the design of active applications is to predict how the
rules will behave at runtime. Due to the various coupling modes, cycle policies and
the occurrence of cascaded rule firing, the interleaving of rule behaviour can become
quite complex even with simple rulebases. The order in which rules are fired may
not be immediately obvious from the rulebase and the rule priorities. It is therefore
important to furnish an ADBMS with tools to support the automatic analysis on sets
of rules in order to predict certain aspects of the rule behavior. For example, analysis
techniques can be used to determine whether a set of rules is guaranteed to terminate
or whether it will behave deterministically. When these aspects cannot be guaranteed,
rule analysis tools may help to isolate the rules responsible for the problem. Even
though the necessity of such design assistances to enable an effective use of ADBMS
technology is undisputed, the nature of these means is not yet fully understood. Rule
development is consequently still a research topic. A set of tools and techniques to
support rule development for ADBMSs has been proposed in [Vad99, Dia98].
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2.4 ADBMS Architectures

The functional components of ADBMSs have been identified for the first time for the
object-oriented ADBMS HiPAC [MD89]. These elements are:

Event Detectors Detect events and signal them to the rule manager.

Rule Manager Maps events to rule firings and rule firings to transactions.

Condition Evaluator Evaluates rule conditions.

The Architecture of HiPAC is sketched in Figure 2.2. Note that the event detectors are
incorporated in theTransaction Managerand theObject Managerthat provide nested
transactions and object-oriented data management respectively. The latter two building
blocks are not exclusively part of anactiveDBMS but passive DBMSs incorporate
components with similar functionality whereby tan object manager is only applicable
for DBMSs with an object-oriented data model.

Database
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Operation

Event
Signal

Rule

ManagerDatabase
Operation

Transaction
Operation

Active Application

Operation
Application
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Manager

Event SignalEvent Signal

Condition
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Object

Manager
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Figure 2.2: Functional Components of the HiPAC Architecture

Subsequent work dedicated to the architecture of ADBMSs has addressed mainly
the system architectures of research prototypes whereby these proposals were typically
driven by implementation specific aspects. Thus the various system architectures vary
considerably. Nevertheless it is nowadays widely agreed that ADBMSs in order to
provide the active capabilities in addition to full DBMS features, are composed out
of standard DBMS facilities of the database system (e.g., transaction manager) and
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Figure 2.3: Principal Subsystems Providing Active Database Functionality

building blocks providing active features such as event detectors, a rule manager and
a rule executor as illustrated in Figure 2.3. The basic issues of ADBMS architectures
are furthermore discussed in [Buc98].

In order to implement ADBMSs there have basically been applied two approaches:

• Layered approach. All active database components are built as a layer on top of
a conventional passive database system. The advantage is that existing database
systems can be converted into active systems without internal modification. For
example, SAMOS [GGD+95b] is built on top of a commercial available DBMS,
ObjectStore [Obj93]. The disadvantage of the layered approach is that it has
potential for poor performance due to the communication overhead between the
“active” layer and the actual DBMS. Furthermore certain features (e.g., specific
coupling modes) that require access to the DBMS subsystem may not be sup-
ported.

• Built-in approach. In this case, all active database components become part of
the database system itself. This architecture can be achieved by modifying an
existing passive database system (e.g., NAOS [CCS94] is an extension of the
object-oriented DBMS O2), by using a database system toolkit for conventional
features (e.g., REACH [BZBW95] relies on the Open OODB core mechanisms
[WBT92]) or by building all components from scratch. The latter approach re-
quires a substantial effort and has to our very best knowledge not been applied
so far.
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Active database functionality can also be provided to some extent by a technique
calledquery modification[SB99a]. In this method – also calledcompiled approach
– DML commands are modified at compile time to include effects of active database
rules. This approach has the distinct advantage that event monitoring and rule pro-
cessing are unnecessary which reduces the complexity of implementation task and is
claimed to improve the overall performance of the ADBMS [WC96]. However, this
approach is only applicable for restricted rule and execution models. For instance
all events must be detectable through the compiler so that the provision of temporal
events and complex composite events is not possible. Furthermore cascaded rule fir-
ing implies that query modification must be applied recursively to provide the DML
statements representing the cascade. Since rule termination cannot be guaranteed at
compiletime there is the risk that the compilation phase may continue indefinitely even
though the cascade would terminate at run-time [WC96].

Finally, in order to render active database functionality useful at all, adequate de-
velopment tools have to be provided as discussed in Section 2.3.

2.5 Conclusion

Most of the techniques discussed in this chapter have been realized in research environ-
ments. However, active database technology scarcely influenced practice. Nowadays
(object-) relational DBMS provide triggers which are actually simple ECA rules, re-
stricted to database operation events that might be signalled for every affected tuple or
once for a set-oriented operation. As far as it is known, none of the popular commer-
cially available object-relational DBMS provides any form of complex events. The
Condition/Action language is usually restricted to DML-statements and proprietary
database programming languages. Trigger execution typically enables immediate and
sometimes deferred coupling. Cascading rule execution usually aborts the triggering
transaction when a cascade visits a relation twice even though the cascade might actu-
ally terminate. Furthermore the number of triggers per table is often limited.

Concerning object-oriented DBMSs the situation is even worse. As far as it is
known there is no commercially available object database system that provides more
than simple event notification mechanisms. Applying these raw event notification fa-
cilities burdens various tasks to the application developers such as programming de-
mon processes to perform blocking reads of the event queues, event signals are to
be numbered, user-defined information is to be packed in strings that are part of the
notification etc. It has been shown in [KHS94, KDS98] that the limitations of expres-
siveness and execution models encountered in commercially available DBMS impede
the development of active applications of industrial-strength and contributes likewise
to the little popularity of active database mechanisms.
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Chapter 3

Foundations of ADBMS Construction

Conceiving a construction system that enables the provision of all potential software
systems of the respective domain is an unrealistic assumption. It is therefore of para-
mount importance to determine carefully what kind of constructs shall be furnished by
means of the prospective construction system. This applies all the more for the domain
of active database technology with its inherent variety of approaches (cf. Chap. 2). In
that sense, this chapter contributes the establishment of a scope of an active database
construction system that ensures on the one hand a broad applicability and makes on
the other hand the system design to a realistic endeavour.

The chapter starts with a survey of previous approaches to construct DBMSs in
general (Sec. 3.1), because constructing ADBMSs belongs in its essence to the field of
DBMS construction. Subsequently in Section 3.2 other proposals to construct active
database mechanisms are presented. It is obvious that software reuse is a central theme
of any (cost-effective) construction system. Thus the principal aspects of software
reuse are discussed in Section 3.3.

The chapter sketches subsequently in Section 3.4 the assumptions and require-
ments underlying the construction system to be devised in this thesis. This construc-
tion system is henceforth referred to as FRAMBOISE1. Afterwards in Section 3.5 the
software engineering principles needed to provide FRAMBOISE are settled. Finally,
Section 3.6 concludes the chapter.

3.1 Database Construction

This section looks at related work in a broader sense by presenting previous approaches
to systematic and cost-effective DBMSs construction. In section 3.1.1 the so-calledex-
tensible DBMSsare introduced. They gave the rationale to actualDBMS construction
systemswhich are discussed in section 3.1.2. In Section 3.1.3 we introduce a novel
conception of DBMSs, i.e, the so calledcomponent database systems. This survey is

1aFRAM ework using oBject-OrIented technology forSupplying active mEchanisms
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concluded by discussing in Section 3.1.4 how the DBMS construction approaches are
reflected in commercially available products.

3.1.1 Extensible DBMSs

The termextensible database systems[CH90] names a direction of database research
that investigated DBMSs that were intended to support the addition of new features like
new data types, functions, complex objects, storage techniques and access methods and
to incorporate recent advances in DBMS technology in a timely manner.

Extensibility was desired at all abstraction levels. At the top level (i.e., the asso-
ciative or user level) the support of abstract data types (i.e., adding new data types and
new operations on such data), as well as the extension of the query languages with
new set operators such as transitive closure was provided. At a lower level, extensible
DBMSs should enable to enhance the query processing with new execution strategies,
including new implementations of operations and new ways of combining these oper-
ators. Examples of these facilities are the addition of new highly efficient join methods
which in turn make use of likewise new index structures to support queries over spatial
data. Finally, extensible DBMSs should allow for the definition of new data storage
methods, thus making it possible to accommodate new storage media such as optical
disks.

The various approaches are principally distinguished according to the style of con-
struction and the construction phases they support or which aspects (e.g., transaction
management) they address. They are typically classified into the following categories:

Kernel Approaches offer a more or less fixed functionality, which implements the
lower layers of a DBMS. Examples of a kernel approach are DASDBS [PSS+87]
or more recently BESS [BP95].

Customizable DBMSs can be modified/extended at specific, well-defined places in
the system (e.g., attachments in STARBURST [HCL+90]). In this approach, the
range of the constructible DBMS is rather restricted (e.g., due to a fixed data
model).

Toolkit Systems (e.g., EXODUS [CDG+90]) offer reusable components which are
selected, eventually modified and plugged together by the database implementor
(DBI) in order to achieve a coherent DBMS or DBMS subsystem. Sometimes
these approaches are also addressed asconfigurable approaches.

Generators or Transformation Systems(e.g., GENESIS [BBG+88], the EXODUS
optimizer generator [GD87], DMC (Data Model Compiler [MBH+86]) take de-
scriptions of an aspect (or an entire DBMS) as input and (semi-) automatically
create corresponding implementations.
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Due to the variety of different approaches, the term extensible database systems is
sometimes considered as misleading [Gep94]. Many of the proposed systems are ex-
tensible like any other software system: Further components are added on top or in-
ternal components are replaced. Other systems are not really extended, but are reused
in their entirety and are plugged into enclosing, new systems. In other cases, it is not
the (database) system which is extended, but the library or repository of specifications
or reusable modules. Summarizing, the expressionDBMS construction approachesis
preferred over extensible DBMSs, because it is not always a full-fledged DBMS that
is extended.

3.1.2 Database Construction Methods

The DBMS construction approaches discussed in the previous section suffer from sev-
eral shortcomings:

• Building customizable systems usually requires advanced programming skills.

• The selection of alternative techniques is not supported and left entirely to the
DBI. Likewise, toolkit approaches burden the DBI with the definition of an ap-
propriate architecture and the integration of the chosen implementation modules.

• Extensible DBMSs mainly considered the implementation of single DBMS-
components and techniques for specific DBMS-tasks such as query optimization
or transaction management. Neither new features can be easily integrated nor is
there a choice among supported alternative realization techniques.

• Guaranteeing the integrity of a DBMS and its data in the face of extensions was
far from being solved.

In fact, the systematic construction of DBMSs as a whole has scarcely been con-
sidered. Thus, to reduce both the amount and complexity of the work required to
construct DBMSs, [GD94c] points out the necessity of an actual DBMS construction
method based on proper software engineering methods. The following requirements
that should be satisfied by a DBMS construction method were identified and analyzed:

1. Architecture. A generic and adaptable architecture model is required that is ap-
plicable for a broad range of significantly different DBMSs.

2. Knowledge Representation. Knowledge about database technology (e.g., on al-
ternative realization techniques for a specific task or on experiences of previous
designs) has to be expressed.

3. Design for Reuse. Design for reuse has to be enforced, i.e., decomposition of
techniques and components into easily reusable artifacts.
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4. Specification-Based Design. The construction method should be based on spec-
ification techniques.

5. Design Completion and Integration. Based on the architecture design and the
requirement specifications, the construction method has to support completion
of the design and the retrieval of adequate artifacts. Based on the architecture
framework and the selected techniques, the construction method should supply
the integration of required modules (be they generated or composed). This as-
sembly results in an operational DBMS (at least partially).

These aspects were first elaborated in the KIDS project [Gep94, GSD97] that aimed
at the development of a DBMS construction approach by defining specification-based
approaches strongly relying on software reuse.

3.1.3 Component Database Systems

The approaches discussed so far proposed some modularization of DBMSs, but the
respective decompositions were just a means to an end in order to enable an efficient
construction process. The resulting DBMSs were still built as rather closed systems.
The emerging pervasiveness of personal and internet computing induced a further re-
consideration of the monolithic conception of DBMSs, in order to cope with the up-
coming demands on database technology. In this section the visions formulated so far
are sketched and the state of the art is discussed.

A Novel Conception of Database Technology

Due to the availability of personal computing resource (e.g., desktops and notebooks)
a vast amount of critical information necessary to conduct day-to-day business is
stored outside the traditional production corporate databases [Bla96]. Instead informa-
tion is found in file systems, index-sequential files (e.g., Btreive), personal databases
(e.g., Access, Paradox) and productivity tools (e.g., spreadsheets, project management,
email). Transferring such data from their original storage system into a DBMS in order
to benefit from database technology such as declarative query languages, transactions
and security, leads to redundancies and is often too expensive. Conversely, applications
often want to exploit the advantages of database technology not just when accessing
data within a DBMS, but also when accessing data from any other information con-
tainer.

Thus, [Vas94] emphasizes the necessity to build DBMSs in a way that they can
interoperate with a variety of data sources. Rich data models are required and database
languages should be decoupled from the DBMS, because a developer simply wants
the use of a database manager without being forced to pick a particular language,
object model or development framework. In that sense, this technical agenda conceives
DBMSs ascomponent DBMSs, i.e., they will be constructed in the long term by putting
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together individual components, as it is no longer feasible to satisfy all upcoming
requirements that might be posed to a DBMS by a single monolithic system.

The World Wide Web and the Internet will lever this trend still further. Since they
enable the cooperation of heterogeneous software components in an almost unlim-
ited variety of ways, an increased demand to integrate reliable (i.e., DBMS-like), dis-
tributed and heterogeneous storage facilities is predictable as well as their necessity to
cope with enormous workloads (in both terms, data to be managed and users) [Vas95].
The latter aspect applies also for active database mechanisms. Recalling traditional ex-
amples for the application of ADBMSs such as air reservation systems, stock markets
or retail systems, it is easy to conceive that an ADBMS must scale to support millions
of user preferences encoded as ECA rules if the application is accessible via the World
Wide Web. Rule systems that are realized either be modifying the rule executor or by
query modifications, however, are not appropriate to support environments that have a
large number of rules.

DBMS Construction Reconsidered

[GD98] elaborates on the principalengineering aspectsof component-oriented database
construction. DBMSs are constructed by(re) bundlingthem, i.e., putting together pre-
existing, reusable and compatible components in a systematic way. The components
to be bundled are either gained by designing them from scratch or as a result from
unbundlingpreexisting software systems. Unbundling is defined asthe activity to de-
compose a category of systems into a set of reusable components as well as a set of
relationships between these components. Hereby, “decomposition” is not restricted to
the meaning that concrete systems are analyzed and parts of them identified as reusable
components. Instead, one would consider them beforehand on an abstract, conceptual
level and determine which components would be required for such a system. Based on
such a generic description of the respective components one starts to build repositories
of components, and in this phase one might in fact get components out of concrete
existing DBMSs.

3.1.4 State of the Art

Nowadays commercial DBMSs increasingly support abstract data types as they have
been devised for extensible DBMSs. They provide means to define so-calledextensible
data typeswhich are packaged with their associated functions, operators and access
modules into specific modules which are in turn called by the respective DBMSs.
These modules are calledDataBlade modulesin Illustra/Informix [SB99b] (Oracle
uses the termcartridge[ora97] and IBM’s DB2extender[IBM95] to describe a similar
concept).

OLE DB [Bla96] defines an open, extensible collection of interfaces that factor and
encapsulate orthogonal, reusable portions of DBMS functionality. These interfaces de-
fine the boundaries of DBMS components such as record containers, query processors

25



www.manaraa.com

and transaction coordinators that enable uniform transactional access to diverse infor-
mation sources. Hence a DBMS becomes a conglomerate of cooperating components
that consume and produce data through a uniform set of interfaces. It is feasible to
interchange notifications among OLE DB components and clients. These notifications
are considered as a basic mechanism on which to implement active database behavior.

The Common Object Request Broker Architecture (CORBA) [Obj97] specifies a
number ofobject services(i.e., collections of system level services packaged as com-
ponents [OHE96]) that correspond to specific database services, e.g., a concurrency
control and a transaction service, a persistence or a query service.

3.2 Construction of Active Database Mechanisms

In this section related work in a narrower sense is surveyed by discussing other ap-
proaches to construct active database mechanisms (Sec. 3.2.1 to 3.2.4) and first ideas
to unbundle ADBMSs in Section 3.2.5.

Note that the implementation of the various ADBMSs is skipped in this context.
Since they were usually implemented as ADBMS research prototypes to verify specific
active database concepts, database construction techniques were not specially taken
into account. Nevertheless some of these research prototypes anticipated the necessity
to build ADBMSs at least partially out of preexisting parts e.g., as layer on top of
a passive DBMS [GGD+95b] or by implementing the ADBMS as an extension of a
database construction toolkit [CKTB95, BZBW95].

3.2.1 AIDE

[Jas94] is a three-layered toolbox to construct active information systems (AISs). The
lowest layer is an interface layer that allows the integration of foreign systems into the
prospective AIS by means of active abstract data types (AADTs) encapsulating several
event types. The top layers provide means to put the AADTs together i.e., various
specification and data manipulation languages as well as tools for the development of
active applications. AIDE proposes comprehensive event handling mechanisms (e.g.,
a rich set of complex events) but to our very best knowledge it is not outlined to offer
different rule execution and knowledge models.

3.2.2 Active-Design

[BFL+97] sketches the initial ideas of a toolkit, called Active-Design, that is used
to provide sophisticated active rule processing mechanisms that run on top of “light-
weight” active DBMSs supporting restricted active functionality. The toolkit is con-
ceived as a set of reusable building blocks that are combined to implement the various
components of the so-calledActive Monitors(AMs). In contrast to our approach, the

26



www.manaraa.com

design of the toolkit is function-oriented rather than architecture-driven. The mod-
ules forming the toolkit are coupled along a layered architecture where each module
uses the interfaces provided by the modules(s) right below and beneath. However, the
functional decomposition of an AM is not directly reflected in the toolkit architecture.
Thus, the cohesion of the modules is rather weak as the procedures in the various
modules are primarily logically associated [Som92].

3.2.3 Amalgame/H2O

[BDD+95] proposes a CORBA-compliant toolkit that includes among other things
a so-calledactiveness servicethat provides a basis for constructing so-calledactive
modules. These are – in terms of CORBA – application objects that use the active-
ness service in the context of a particular application and incorporate a rulebase, a rule
execution model and optionally a local persistent store. Active modules are specified
by means of the H2O language and subsequently generated by composing them of
components of the Amalgame toolkit. The toolkit is up front designed for its appli-
cation in a CORBA environment and is not specifically outlined to interoperate with
DBMSs. Thus, the active modules can potentially interact with arbitrary data sources
by applying for instance the CORBA event service.

3.2.4 TriggerMan

[HK97] is the first proposal and implementation of a software system (ATP) that
processes triggers asynchronously after transactions have committed in the source
database. An ATP is designed to be able to gather updates from a wide variety of
sources (by providing an extensible data source mechanism) incorporates sophisticated
methods to evaluate complex (i.e., multitable) conditions. As far as it is known, Trig-
gerMan is not outlined to process complex events. Even though an ATP is extensible
in several ways and there are potentially various forms of such ATPs, TriggerMan is
not designed as an actual construction system including tools and methods that support
the development of ATPs themselves.

3.2.5 Unbundling of ADBMSs

The first ideas to separate active database functionality from the DBMS in order to pro-
vide so-calledactivity componentswere discussed in [GKvBF98, KGvBF98]. A series
of consecutive unbundling steps sketch various generic architectural proposals that can
be used as a starter-kit to initiate the unbundling of active database mechanisms for a
specific purpose.

In order to cope with the scalability of ADBMSs when large numbers of triggers
must be processed, Stonebraker and Brown [SB99a] propose an approach similar to
the TriggerMan project (cf. Sec. 3.2) with a stand-alone rule execution engine that
is associated to the DBMS execution engine (cf Figure 3.1). This engine receives
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Figure 3.1: Proposal for a Scalable Rule System [SB99a]

each DBMS update and passes it through a highly optimized data structure e.g., a
discrimination network, that encodes active rules.

3.3 Software Reuse

It is now widely recognized that reuse techniques improve the quality of the software as
well as they decrease the time of the software development and the time-to-market of
the final products [Rin97]. Thus it is obvious that software reuse must be a cornerstone
of any construction system aiming at cost-effectiveness.

Software reuse is defined as the process of creating software systems from existing
software rather than building them from scratch [Kru92]. It can be considered from
six perspectives [PD93]:

Substancedefines theessenceof reused items, i.e., ideas, concepts, software building
blocks, skills etc.

Scope defines the form and extent of reuse, i.e.,domain-specificversusgeneral-purpose
reuse,internal reuse(within the same software system) versus external reuse,
small-scale(procedures) versuslarge-scale(entire software systems) reuse.

Mode defines how reuse is conducted, i.e.,ad-hocreuse versussystematicreuse which
is based on a formal process model.
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Technique defines the approach that is used to implement reuse, i.e., compositional
reuse (by assembling software building blocks) versus generative reuse (reuse of
a tool that generates reuse by generating programs on account of a specification).

Intention defines how elements will be reused, e.g.,as-is reuseversusreuse by adap-
tation.

Product defines what is reused, e.g., specification, design, architectures, source code,
documentation etc. The entirety of reusable products is often addressed as
reusableartifacts.

The abovefacets of reusesummarize thetechnical aspectsof software reuse. In order
to implement a successful reuse program, the following technical problems must be
solved in a satisfying manner [Kru92]:

Selection As libraries of reusable artifacts can be very large, the retrieval of the arti-
facts suited for reuse in a concrete situation must be supported.

Integration Typically, it is not possible to build a new and coherent software system
by simply assembling the artifacts identified as suited for the respective task.
Instead, the selected artifacts need to be integrated implying that support for this
activity is necessary.

Specialization Often there are no artifacts available that fulfill exactly the needs of
a specific situation. Typically, an artifact that fits relatively best is reused by
specializing it for the current context. Consequently, this customization activity
needs to be supported and the modified artifacts should be added to the respective
library.

Abstraction In order to enable the aforementioned activities, reusable artifacts must
be represented in an abstract way. This abstraction must allow to conceive easily
the semantics of an artifact and if the latter is appropriate for the system under
construction.

The technical aspects addressed so far are mandatory prerequisites for any success-
ful reuse but they are not sufficient to make reuse happen. Systematic reuse requires
also long-term, top down management support because years of investment may be
required before it pays off, legal issues may have to be considered and changes in
organizational fundings and management structures may be necessary [FI94].

3.4 Assumptions and Requirements of our Work

In this section, we identify the basic notions of our prospective ADBMS construction
system FRAMBOISE based on the following assumptions:

29



www.manaraa.com

• FRAMBOISE shall enable the construction of active database mechanisms as an
individual (active) database servicethat interoperates with a specific database
management system.

• There may be several DBMS-specific instances of this active database service.

• We establish the ECA rule paradigm as basic concept of our active database ser-
vice, because this is more generally applicable than EA and CA rules (which can
also be implemented as general cases of an ECA rules). We refer subsequently
to this active database service asECA System(ECAS).

• FRAMBOISE shall be applicable to arbitrary DBMSs. Hence there may be
several DBMS-specific instances of ECA Systems.

• ECA Systems shall becustomizableby enabling the application engineers to
choose among alternative rule and execution models.

The basic features of ECA Systems are presented in Section 3.4.1 in greater detail.
Subsequently the alternative rule and execution models provided by FRAMBOISE are
specified (Sec 3.4.2). Finally, the requirements of a cost-effective construction process
is addressed in Section 3.4.3.

3.4.1 Features of ECA Systems

ECA Systems are basically active database mechanisms that interoperate with database
management systems. Thus they represent database middleware that is able to pro-
cess active database rules, according to specific knowledge and rule execution mod-
els. These models are determined by specific users of FRAMBOISE – addressed as
ADBMS-implementors(ADBIs) – according to their needs.

The overall system formed by an ECAS and the respective DBMS shall provide the
functionality of an active database management system as it is outlined in the “Active
Database Management System Manifesto” [DGG95]. On the one hand, the overall
system must preserve the concepts of the passive DBMS such as “passive” modeling
facilities, query languages, multi-user access, recovery etc. On the other hand ECASs
must support the following features:

• ECA-Systems shall support the definition and management of ECA-rulesi.e,
ECASs have to provide means to define events, conditions and actions.

• ECAS shall have an execution modeli.e., they detect event occurrences, evalu-
ate conditions and execute actions. These operations will often not be performed
by an ECAS itself but by the DBMS or external application programs (e.g., the
DBMS signals an update or evaluates a query representing a condition). The
ECAS performs rule execution by processing the events and invoking the re-
spective operations according to its rule execution model. Thus, an ECAS must
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have a well-defined execution semantics, i.e., event detection, signalling and
consumption must be well-defined such as the coupling modes that determine
when, how and on what database states conditions are evaluated and actions ex-
ecuted. Finally, conflict resolution must either be pre-defined or user-definable.

• As an optional feature, the Manifesto proposes that an ADBMS should represent
information on ECA-rules in terms of its data model. As for an ECAS, this
means that it must be possible tomaintain a rulebase of an ECAS using the
functionality of its associated DBMS. This should, however, not be a mandatory
feature, i.e., an ECAS may have its own rulebase storage facility.

• An ECAS shall support a rule definition language that is specialized for the
respective knowledge and rule execution model. Furthermore, an ECAS comes
along with anADBMS programming environmentincluding tools like rule browser,
rule designer, debugger, trace facilities etc. in order to assist the user of an oper-
ational ECAS to define and maintain a rule schema.

• ECASs should be tunable. Therefore an ECAS must provide “hooks” for the
application of performance tuning tools to measure eventual bottlenecks.

For the time being, we rule the provision of distributed active database mechanisms
out. Hence an ECAS interacts exclusively with one DBMS server.

3.4.2 Active Database Functionality covered by FRAMBOISE

The rule models or languages proposed in various research projects are only marginally
standardized. Even though there is principal conceptual agreement in a number of ar-
eas (cf. [DGG95]), there is still little consensus among the systems. The disagreements
are usually attributed to the fact that a choice must be made among a number of rea-
sonable alternatives and each alternative seems to be appropriate for certain scenarios
[WC96]. Regarding the rapid evolution in the information systems scenery and its
impact on database technology, it is conceivable that this diversity remains an inher-
ent characteristic of active database technology, implying the impossibility to develop
all-round, “one size fits all” active database systems.

Thus FRAMBOISE must enable the construction of ECAS that cover the dimen-
sions of active database behaviour listed in table 3.1. This table is derived from
[PDW+93] that introduces a number of dimensions of active rule system behaviour in
order to survey differences between various proposals. The symbol⊂ is used to indi-
cate that the particular dimension can take more than one of the values given, whereas
∈ indicates a list of alternatives. For a detailed explanation of the various elements
listed in table 3.1 cf. [PDW+93].
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Event Type⊂ {Primitive,Composite}
Source⊂ {Structure Operation,Behaviour Invocation,

Transaction,Clock,Error,External}
Granularity⊂ {Instance,Collection}
Role∈ {Mandatory}

Condition Mode⊂ {Immediate,Deferred,Detached}
Role∈ {Mandatory}

Action Mode⊂ {Immediate,Deferred,Detached Dependent,
Detached Independent}

Options⊂ {Update Db,Abort,Do Instead,
Update Rules, Inform,External Call}

Execution Model Transition Granularity⊂ {Tuple,Set}
Net-effect policy∈ {Yes,No}
Cycle Policy∈ {Iterative,Recursive}
Priorities∈ {Dynamic,Numerical,Relative,None}
Scheduling∈ {All Parallel,All Sequential,Saturation}

Management Operations⊂ {Activate,Deactivate}
Description⊂ {Programming Language,Objects,

Extended Query Language}
Adaptability∈ {Compile Time,Run Time}
Data Model∈ {Relational,Extended Relational,

Object-Oriented}

Table 3.1: Active Database Behaviour covered by FRAMBOISE
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3.4.3 Cost Effectiveness

ECA Systems are not an end in itself, but provide active database services which are
in turn used by other software systems. Hence the provision of the ECAS will be only
one task of many to be accomplished in a software development project implying the
particular importance of a cost-effective construction.

It is principally justifiable that the provision of an ECAS requires a certain ef-
fort, because it is not an everyday task. Cost-efficiency relies therefore primarily on a
construction process that ensures a proper quality of the final product. Recalling the
complexity of active database mechanisms it is easy to conceive that the construction
of an ECAS compensates economically on mid to long-terms over ad hoc implemen-
tations that fake some active database functionality. It requires quite some expertise in
ADBMS technology to get such “hand woven” implementations right and one risks a
considerable maintenance effort to enhance these software systems continuously with
additional features (e.g., specific coupling modes or complex events) that belong to the
standard repertoire of ADBMS technology but are difficult to provide.

Hence cost-efficiency will primarily be provided by means of software quality.
Nevertheless, the objective is that time and human resources to build an ECAS are
minimal.

3.5 Software Engineering Principles underlying FRAM-
BOISE

It is a truism that software reuse does not come for free but must be fostered thor-
oughly and has an associated overhead cost and effort. It is therefore indispensable to
establish up front according to which (reuse-oriented) software engineering principles
a software system shall be built. Accordingly this section identifies the adequate tech-
niques to provide a cost-effective active database construction system. These methods
are in the remainder of this thesis applied to furnish FRAMBOISE.

Section 3.5.1 specifies which of the reuse facets introduced in Section 3.3 are suit-
able for the purpose of this thesis. Based on these principles, Section 3.5.2 settles the
construction paradigm that is suited for our purpose. Finally, Section 3.5.3 sets the
process according to which FRAMBOISE is furnished.

3.5.1 The Reuse Facets of FRAMBOISE

The construction system devised in this thesis is dedicated to investigate database con-
struction techniques, therefore the focus is ontechnical aspectsof software reuse.

Scope FRAMBOISE is a construction system specialized to provide active database
mechanisms. Thus it has a domain-specific (vertical) reuse scope, whereby large-scale
external reuse (i.e., among multiple ECAS) is primarily envisioned.
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Mode FRAMBOISE aims at the systematic construction of ECAS and must there-
fore be guided by concise process models.

Technique FRAMBOISE is conceived as a so-calledtransformation systemthat pro-
cesses a specification of an ECAS and produces (semi-)automatically an ECAS out of
prefabricated components or eventually a skeleton where missing components must be
filled into. In order to achieve flexibility, components shall be designed in a way that
they can also be used without applying the generator.

This hybrid method where a generative approach is built on top of a composition-
-based one is a sensible compromise. Generation-based systems are usually domain-
specific and have the advantage that the reused patterns can be designed and imple-
mented carefully by experienced programmers. Considering that FRAMBOISE is
domain-specific and that there are patterns that appear in all ECASs (e.g., every ECAS
implements a rule execution cycle) the adoption of a strictly generative approach seems
attractive. However, generative approaches cannot be applied easily in all situations,
because they are often too general or too specific for applications under consideration.
Since FRAMBOISE must provide for interaction with an unlimited range of DBMSs
and applications, it is impractical to rely exclusively on generative techniques. On the
other hand, composition-based approaches are generally applicable to a wider variety
of applications, but, compositional reuse requires larger efforts to master the selection,
integration etc. problems addressed in section 3.3. This can be mitigated to some
extent with a generator that assembles a skeleton of an application, indicates missing
parts and eventually proposes good candidates to be inserted.

Intention Reuse that relies exclusively on shrink-wrapped components is inflexible
and usually too restrictive [PD94]. Thus it is illusory that ECAS can always be assem-
bled out of preexisting components, even though there will be a substantial number
of components that are generic enough to be reused “as-is” throughout most ECAS.
Hence, FRAMBOISE must provide for reuse by adaptation.

Product FRAMBOISE should not restrict software reuse to source code and their
resulting components, because writing code is usually down in the 10 - 20 percent
range of total development costs [JGJ97]. In fact, virtually any result obtained in a
previously constructed ECAS might be reused in later constructions (e.g., designs,
specifications, test cases etc.).

Substance FRAMBOISE is principally intended to reuse special skills and concepts
about ADBMSs. Focusing on the reuse of components as reuse technique does not
exclude the reuse of ideas and concepts, because the reuse of a component automat-
ically means the reuse of the ideas and concepts that are built into the component.
This applies in particular for large-scale components let alone entire architectures that
intrinsically incorporate much ADBMS knowledge.
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3.5.2 ECAS Construction Based on Bundling

By discussing the reuse facets of FRAMBOISE, the reusable software were identified
as one of the cornerstones of an active database construction system. Hence FRAM-
BOISE corresponds in its essence with the conception outlined in [GD98] (cf. Sec.
3.1.4) namely to construct DBMSs byrebundlingthem out of prefabricated compo-
nents. Thus many of the ideas and notions formulated there are also applicable to
devise a system to construct ADBMSs. [GD98] identifies two levels of abstraction for
(un-) bundling:

• Themeta leveldetermines the necessary concepts and models for bundling, e.g.,
it defines constructs to model un- and rebundled systems.

• The instance leveldeals with concrete components and new systems (processes
at this level are referred to asinstance (un)bundling processes).

Software engineering researchers and practitioners agree that the quality of the result-
ing software product depends to a high degree on whether a proper software process
model is defined and enacted during a construction. In that sense, [GD98] describes
the provision of a bundling oriented construction system by means of an informalmeta
bundling processthat indicates how the necessary concepts and models for bundling
shall be determined. This meta process is described as follows:

1. Perform domain analysis. Domain analysis is defined as the process of identi-
fying and organizing knowledge about some class of problems – the problem
domain – to support the description and solution of those problems [PDA91]. In
this phase, the domain of bundable systems is analyzed through domain analysis
techniques [PDA91]. This step clarifies what the required functionality should
cover in detail. A further important step in domain analysis identifiesfixedand
variableaspects, because some elements of bundable systems are variable in the
sense that they are not contained in every system or that different variants can be
pursued for them. Some parts will be fixed for all rebundable systems because
the same functionality is required by all systems in exactly the same way.

2. Define a software architecture model. In this phase an architecture model capa-
ble to define the software architecture of the rebundled systems is established.
The most important ingredients of such an architectural model define the notion
of component as basic units and relationship types between these components.

3. Define the unbundling and rebundling processes. The instance unbundling pro-
cessyields one or more functional aspects identified in the domain analysis
which can be represented in the architecture model. An instance unbundling pro-
cess spans all activities from the domain analysis of the aspects to be unbundled
up to the provision of the components which are integrated in adequate repos-
itories. Conversely, theinstance rebundling processstarts with a requirement
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analysis, provides an operational system built out of components and completes
with the maintenance of the respective system.

4. Perform an unbundling process for an initial set of systems (if monolithic systems
are available) or identify bundable components. Typically, several unbundling
processes are performed, because it is not sensible to unbundle a complex system
in a single step. Instead, the various aspects to be unbundled are considered
progressively.

The provision of an ECAS is closely related to the construction ofone aspect of a
DBMS according to this conception. In that sense FRAMBOISE is a construction sys-
tem to provide ADBMSs by (re) bundling ECASs out of prefabricated components and
integrating them with the other aspects of DBMSs – which may in turn be rebundled
entities.

Since bundling-oriented database construction is still in its infancy, aspects con-
cerning component software technology have not yet been considered in depth. Com-
ponent software technology, however, is considered as one of the most searched and
at the same time least understood topics in the software engineering domain [Szy97].
Thus we emphasize the component engineering aspects in our work and consider bund-
able DBMSs (including ADBMSs) subsequently as specific component software.

3.5.3 The FRAMBOISE Meta Bundling Process

In order to furnish FRAMBOISE we need a process that guides the activities to deter-
mine the necessary concepts and models. In accordance with the terminology estab-
lished in [GD98], we refer to this process as Meta Bundling Process. The elements
listed in the meta bundling process we discussed above, are an adequate basis to define
such a process for our purpose. However, this list must be enhanced by an activity
to establish a propercomponent modelin order to clarify our perception of a reusable
software component. Since architecture models rely on the notion of components it is
sensible to define the component and the architecture model in the same phase of the
meta bundling process.

We achieve the meta bundling process for the FRAMBOISE project as shown in
Figure 3.2. The provision of FRAMBOISE will proceed according to this meta pro-
cess.

3.6 Conclusion

This chapter settled the FRAMBOISE construction system to provide active database
mechanisms that interoperate with a principally unlimited range of database manage-
ment systems. The final products constructed by means of FRAMBOISE – referred
to as ECA-Systems (ECASs) – represent database middleware that is able to process
ECA rules, according to specific configurable knowledge and rule execution models.
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Define Models

Perform Domain Analysis

Unbundle Active DBMSs

Architecture and Component Model

Unbundling Process Rebundling Process

denotes activities

Vocabulary, Concepts

Define Processes

Initial Set of Components

Figure 3.2: The Meta Bundling Process of the FRAMBOISE Project
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Furthermore the basic technology identified, namely ECASs are built out of pre-
fabricated reusable software components. Thus FRAMBOISE is conceived as a com-
ponent framework that is provided according to the meta process depicted in Figure
3.2. The initial domain analysis has principally been accomplished in chapter 2 so that
the next chapters proceed with the definition of the component and architecture model
(Chap. 4) as well as with the instance bundling processes (Chap. 5).
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Chapter 4

Software Models

This chapter investigates in component and architecture models that are adequate for
an active database construction system. Whereas there is nowadays a wide agreement
about program constructs like classes, modules, procedures etc. such an unanimity did
not emerge yet concerning software components and architectures. Establishing a con-
cise perception of software components and architecture is therefore an indispensable
prerequisite to successfully devise any component based construction system.

Since there exists a large amount of publications about component software and
software architectures, this chapter is to a large extent a discussion of existing litera-
ture and approaches. The actual contribution of the chapter is that it settles in the midst
of this babel a proper component and architecture model that enable the designer as
well as the users of an active database construction system to grasp the essence of its
software artifacts. The component model is described in Section 4.1 and the architec-
ture model in Section 4.2.

4.1 The Component Model

A component model defines basically the following aspects:

• the perception of a reusable software component,

• how components are connected to form the overall system, and

• the information that must be stored in a repository together with the respective
component.

The main characteristics of software components are examined in Section 4.1.1.
They are delimited afterwards in Section 4.1.2 from the concepts of object-oriented
and modular programming. Subsequently techniques to form composite systems out
of components (Sec. 4.1.3) are examined and component management issues are dis-
cussed in Section 4.1.4. Finally, the component model underlying this thesis is derived
in Section 4.1.5.
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4.1.1 The Characteristics of Software Components

There are basically two aspects that form the essence of a software component, i.e,
what kind of software building block it is and how it is delimited from its environ-
ment. We discuss first the notion of a software component in general and address
subsequently component interfaces, followed by the presentation of a technique called
reificationthat enables components to present meta information. Finally we introduce
various abstraction levels to expose component internals to component developers and
users.

The Notion of a Software Component

The discussion about reusable software components began at the same time (i.e., in
1968) with the emerging of the term software engineering [NR68]. Even though the
number of articles and trivia published on this subject grew exponentially over the last
years, no generally agreed conception of component software has been established.

The literature offers definitions of software components – subsequently simply re-
ferred to as components – that dissent on several aspects. First, there is no agreement
on the granularity of components which may range from simple macros or templates
[Jac93, Sam97] to complex subsystems (so-calledmegamodules[WWC92]). Some-
times it remains unclear how components are used [Boo87] or the system composition
time is emphasized [NT95]. Moreover, components are either perceived as an abstract
notion used as a design philosophy independent from any concern to reuse existing
components or they can be seen as off-the-shelf building blocks used to design and
implement component software [BW98]. Probably the most rigorous perception has
been established in [Szy97]

A software component is a [binary] unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition
by third parties.

Deployinga component denotes that it can be installed in the target system without
modification, whereas being aunit of independent deployment signifies that a compo-
nent cannot be deployed partially. Sometimes, deployed components are also referred
to as acomponent instances. Since components are units of deployment, they must be
distributed with all immutable resources that are not listed as explicit context depen-
dencies (e.g., images or other frozen medias used by the component for presentation
issues). Note that mutable resources have not to come along with the component be-
cause they belong to the respective component instances.

Component Interfaces

In order to become applicable by third-parties, components must be sufficiently self-
contained and they must be separated clearly from their environment and from other
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components. Thus it is mandatory that components interact with their environment
through well-definedinterfaces. They are a means to make the context dependencies of
a component explicit. For instance, an approach proposed in [BBK+97] distinguishes
between so-calledprovidedandrequiredinterfaces. The former specify the services or
capabilities a component offers to other components whereas the latter specify services
that a component must receive from other components to perform their functionality.
There are approaches where components may have multiple interfaces. This is useful
to structure complex functionality or to provide backward compatibility.

In their most basic form interfaces are a set of named operations that can be in-
voked by clients of the respective component. In a wider sense, however, component
interfaces are regarded as contracts [Mey92a] between clients of an interface and the
provider of an implementation of the interface. A particularly popular contractual
specification method is to capture the two sides of a contract by specifying pre- and
postconditions for an operation by means of a so-calledHoare Triple (i.e., a triple
{precondition} operation {postcondition} ). Contracts are a simple
idea but have subtle implications because revised implementations must continue to
obey the postconditions and may still rely on the preconditions. Actually, further revi-
sions of a component may only weaken preconditions or strengthen postconditions.

Formal contracts (e.g., such as those relying on Hoare triples) are, however, not
sufficient to provide usable components. On the one hand, attempting to formalize
everything can easily lead to components that are nearly impossible to grasp and are
therefore quite useless. Thus it is important not to overspecify component interfaces.
On the other hand, components must also obey requirements such as availability, mean
time between failures, throughput, data safety, capacity etc. It is, however, not yet clear
how such requirements might be specified best in contracts. An interesting approach
is to specify time and space complexity bounds in a contract to ensure certain perfor-
mance requirements in a platform independent way [Szy97].

Reification

Static interface definitions are a valuable source of information about components, but
they are not sufficient to support development tools like browsers and debuggers or to
generate self documenting components and finally to support versioning and licensing
procedures.

Further meta information is preferably gained directly from the components if they
are able toreify meta information. This implies that the respective component imple-
mentation technique must be able to preserve information available at compile time
(e.g., class or method signatures) for inspection at runtime. Making this information
available to a system is calledreification [KdRB91]. Metadata gathered by means of
reification is always accurate but it provides the risk that customers might decompilate
a component and thus get insights into internals that a component manufacturer does
not want to provide.
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Component Abstractions

Besides delimiting components and establishing a contract to invoke services, inter-
faces are alsoabstractionsof components that hide implementation details to varying
degrees. Generally, the following levels of abstraction are distinguished:

Blackbox Abstraction No details beyond the interface and its specification are made
known to clients.

Graybox Abstraction Controlled fractions of component implementations are revealed.
The notion is considered as dubious because partially revealed implementations
could be seen as parts of the specification.

Glassbox Abstraction All internals of a component can be seen from outside, but
must not be changed. Hence the implementation of components can be studied
to understand what the abstraction does, but the components themselves are used
like black-boxes.

Whitebox Abstraction The interface may still enforce encapsulation and limit what
clients can do even though implementation inheritance – if applied – enables
considerable interference. However, implementation details of a whitebox are
fully exposed and can be adapted.

Software components should preferably be applicable without knowing internals of
the component i.e., they are conceived forblackbox reuse. The corresponding black-
box abstraction is provided by the aforementioned ability of the components to reify.
However, blackbox abstraction is not sufficient because it is impossible to prevent sit-
uations where a proper component cannot be found and one is obliged to implement
one from scratch. Thus component repositories often provide whitebox abstractions,
whereas some components might be exposed exclusively in a glassbox abstraction in
order to prevent unsolicited modifications.

4.1.2 Components versus Objects and Modules

Modular and object-oriented programming techniques form an effective code reuse
technique. In fact, classical software libraries can be and are sold in binary form and
up to now they are the most successful form of reusable software building blocks.
However, the concept of objects and modules differ from the strict component notion
established above.

Object-Orientation

Components and objects are typically related but they do not depend on each other. It
is feasible to provide components which are built on top of procedural or functional
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approaches or even by means of assembler languages. The other way round object-
oriented languages obviously can be applied to build fully operational programs or
libraries instead of components.

The distinction between components and object-oriented concepts shows itself re-
garding that on the one hand a component typically consists of several classes but a
class is on the other hand not necessarily confined to one single component.

Modules

Since component technology implies modular solutions, component software relies on
modularization techniques. The opposite, however, does not strictly apply i.e., not
every modularization yields components in the strict sense. It is for instance com-
mon practice to bundle thematically related operations (e.g., traditional mathematic
libraries) in distinct modules according to a design guideline indicating that each mod-
ule should be simple enough that its implementation can be fully understood [BCK98].
Such a modularization is sensible but such modules hardly can be perceived as com-
ponents.

In that sense, module concepts actually are rather focused on implementation of
software building blocks than on the provision of composite systems. Nevertheless,
modules – unlike classes – are sometimes seen as minimal components. However, they
differ from the above notion of full-fledged components, because module concepts
typically do not support the delivery of immutable persistent resources with modules
(apart from hard-wired constants) [Szy97].

4.1.3 Composition Techniques

Components are deployed independently but they are never deployed in isolation. They
are rather deployed to cooperate with other components to form operational composite
software systems (i.e., ECAS or ADBMSs respectively). Effective component soft-
ware relies on techniques that enable developers to integrate components in novel con-
stellations and possibly unforeseen deployment areas. Furthermore, flexible upgrade
and replacement of system components must be feasible, regardless whether they are
developed in-house, supplied by third-parties or purchased off-the-shelf.

Such a compositional style of development requires methods that go beyond the
traditional approaches where systems are finally built by linking software modules to-
gether. We discuss in the next section how components can be connected and outline
subsequently the provisions of component infrastructures with respect to technical as-
pects of component integration.

Connection-Oriented Programming

The activity of putting components together in order to build a system is usually re-
ferred to asConnection-Oriented Programming[Szy97] in order to emphasize that
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component instances are connected in order to collaborate. We discuss in this section
the principal connection mechanism and how components are usually assembled.

Connection Mechanisms Component interoperation means that components invoke
services from other components and perform in turn operations for other components.
It is principally feasible to implement component interoperation by applying tradi-
tional caller-driven programming techniques. However, such components are rather
tightly coupled because of the explicit reference that a caller has to maintain to the
callee. The asymmetry of connection primitives (i.e., procedure calls or method invo-
cations) reinforces this effect when components must hold mutual references.

Message-oriented connections allow to replace such rather statically chained call
dependencies by indirections that can be configured arbitrarily at runtime. That means
that parts of a system interact with each other by exchanging message entities that
“travel” from a sender to one or several receivers. Such connection mechanisms are
increasingly factored out as separate messaging (or event) services (e.g., MQSeries,
TIBCO etc.). Hence it is feasible to transport messages indirectly by sending them to
a distribution service that propagates them to the receivers interested in the respective
message. The latter either register with such a service or the service uses a multicasting
or broadcasting strategy to locate potentially interested receivers.

Component Assembly The connection mechanisms are the basic ingredients of the
so-calledglue [NL97] i.e., the software that connects specific component instances.
Gluing is often performed by applying lightweight programming techniques likescript-
ing. Scripts are essentially small – typically procedural or functional – programs
that intercept events on their path from a source to a sink and trigger special actions.
This technique closely resembles shell programming practiced in UNIX environments.
Scripting approaches have been successfully integrated in visual development environ-
ments like Microsoft’s Visual Basic or Borland’s Delphi.

Component Infrastructures

Component infrastructures furnish the technical elements towire [Szy97] software
components. Basically, this addresses the aspects of component interface specifica-
tion required to ensure binary compatibility of components, the handling of references
when they leave their local process, the location of services and the handling of com-
ponent evolution.

The binary compatibility of components is an important issue because it is unthink-
able to ask all vendors of dependent components – and the vendors of components
depending on these components etc. – to recompile and redistribute within any rea-
sonable time. Unfortunately on the binary level there are principally no conventions
that go beyond the invocation of procedures. Since contemporary operating systems
and their system libraries have procedural interfaces, there was no need for operating
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system manufacturers to define method calling conventions so far. Consequently, cur-
rent object invocations do not follow standard calling conventions with the result that
code compiled using different compilers might not interoperate, even if implemented
in the same language.

There emerged a number of approaches providing ’component wiring’ standards
that try to capture their share of the emerging component markets. Nowadays most
prominent approaches are the CORBA-centered standards emerging mainly from the
world of enterprise computing [Obj97], the COM-centered standards [Rog97] which
evolved out of Microsoft’s dominance of the desktop area and finally Sun’s Java-
centered standards [GJS96].

Component Frameworks

Mere component infrastructures are not sufficient to effectively build composed sys-
tems. The feasibility to build arbitrary systems out of components is mostly hampered
by the so-calledarchitectural mismatch[BCK98]. This describes a disagreement be-
tween the assumptions embodied in separately developed components that manifests
itself architecturally. For instance two components dissent about which one invokes the
other. Avoiding architectural mismatches requires environments that set the conditions
how the components are to be connected to form composite systems. Such deployment
areas are usually settled bycomponent frameworks. In the broadest sense, component
frameworks are component-oriented development environments [NL97] that consist of
a dedicated and focused architecture, a set of interfaces and the rules that govern how
the components ’plugged into’ the framework may interact. Component frameworks
usually provide an implementation that supports components conforming to certain
standards and allows instances of these components to be ’plugged’ into the frame-
work. For instance, a component framework might enforce some ordering on event
multicasts and thus exclude entire classes of subtle errors caused by glitches or races
that could otherwise occur. The implementation of the component framework and
those of the participating components, however, remain separate.

The most prominent example of a component framework is OpenDoc [FM96], a
compound document architecture that has originally been developed by Apple and
IBM. Component frameworks outside the domain of graphical user interface building
are nowadays still rare [Szy97], a fact that has been confirmed recently in [Mau00].
One of these seldom encountered examples is JBed/RTOS [Mic], a realtime operating
system consisting of components, which has been developed by Oberon Microsystems.

Framework Hierarchies

Component frameworks are usually targeted for specific domains and it is nowadays
accepted that single component frameworks that fit for every purpose are illusory
[Szy97]. Thus building complex composite systems may require the incorporation
of several component frameworks, which implies in turn the necessity of aninteroper-
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ation designfor the participating component frameworks. Such interoperation designs
can be devised as frameworks of their own with component frameworks as plug-ins.
Szyperski proposes a three-tiered meta architecture where the first two tiers are formed
by the components (first) and the component frameworks (second) [Szy97]. Frame-
works situated in the first tier are also referred to asfirst order frameworkswhereas
those in the second tier are classified assecond-order frameworks. The third tier in-
corporates the component framework interoperation design. However, as current ap-
proaches only provide single component frameworks it is not yet clear how the third
tier should be built.

4.1.4 Component Management

Effective component-oriented software development relies on the ability to identify
and retrieve adequate components and on the feasibility to distribute components with
all necessary information. We discuss the principal component management activities
in the next section, followed by a presentation of the FRAMBOISE component schema
that determines the information to be registered with a software component.

Component Management Activities

Component management principally involves the storage of components as well as
classifying and packaging them for subsequent distribution.

Storage Components are preferably stocked in component repositories that contain
the software components with all relevant information about them. Repositories are
sometimes subdivided into repositories providing general purpose components (local
repositories), domain-specific repositoriescontaining special-purpose components and
so calledreference repositories[Moo94] that accumulate meta information to find
components in other repositories.

Cataloging Components must bee cataloged in order to be able to identify and re-
trieve them subsequently in an efficient way. The catalogue information should consist
basically of precise specifications of what components do and what platform require-
ments they have. Research has concentrated on how to catalog and retrieve compo-
nents but there are no methods that are proven to work with components of substantial
complexity. There are various indexing vocabularies to classify components, begin-
ning with generally applicable approaches like free text, keyword classification and
enumerated classifications (alike ISBN numbers) to more specialized classification
schemas that rely on specific facets or attributes (for a comprehensive overview cf.
[Sam97]).
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Packaging Components must be packaged in such a way that they are deliverable
and can be administered at their deployment site. A reasonable container is necessary
if, for instance, a component consists of various modules or objects and exhibits var-
ious interfaces. Moreover, a component package typically includes meta information
about the components as well as additional tools for deployment. Finally, component
packages often are certified by message digests in order to ensure the customer that the
respective package can be trusted.

4.1.5 The FRAMBOISE Component Model

From a component-oriented point of view, the construction system devised in this the-
sis represents a component framework, i.e, a second-order framework as described in
Section 4.1.3. This section establishes the characteristics of software components ap-
plied in FRAMBOISE, as well as the paradigm according to which they are connected.
Finally, the kind of information to be stored and packaged together with a component
is specified.

Software Components in FRAMBOISE

Components in FRAMBOISE have the following characteristics:

• The rigorous conception of a software component given in [Szy97] (cf. Sec
4.1.1) is applied in FRAMBOISE. Thus it is avoided that one looses the focus by
subsuming a variety of well-defined software constructs like templates, macros,
objects or modules under the term software component.

• Components shall represent significant functional units of composition of the
future ECA Systems. Theirgranularity, however, may vary such that com-
ponents can becoarse-grainedby providing high level functions like complex
event detection or they may befine-grainedto provide low level tasks such as
the mapping of system specific parameters to an ECAS internal representation.
However, we rule microscopic components out – “Component assortments that
offer a hundred of different implementations of stacks and queues are not what
the component market is waiting for [Szy97]”.

• Component interfaces in FRAMBOISE

– define the operations that clients can invoke on the respective component,

– include interface definitions that a component requires to be successfully
deployed, and

– are contractually specified by means of Hoare triples.

The more sophisticated approaches to specify interfaces presented in Section
4.1.1 are not practical for FRAMBOISE, because interfaces are not only a means
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to describe the external view of a component but they are also necessary to en-
force subsequently the integrity of a composite system. Thus we adopt a con-
ception of component interfaces which is applicable for current implementation
techniques.

Note that even this simple perception of a component interface is a conceptual
view that might be compromised by a chosen implementation technique. For
instance Eiffel [Mey92b] is to our very best knowledge the only one among the
more popular programming languages that enforces Hoare triples. In other lan-
guages one is required to insert corresponding assertions manually in the respec-
tive code. However, interface definitions obeying the above requirements can be
mapped rather straightforwardly to the most up-to date programming systems.

• Components in FRAMBOISE are able to reify. Since FRAMBOISE is a research
project, the risk of component decompilation – the chief drawback of reification
– is neglectable.

• FRAMBOISE relies on whitebox abstractions of components in order to support
an ADBI (cf. Sec. 3.4.1) to implement new components. A subsequent transfer
to glassbox or even blackbox abstraction is out of the scope of this thesis.

• In order to prevent a future proliferation of rather similar components, the reim-
plementation of components that nearly match the requirements of a specific
application should be avoided. Thus, components shall exhibit features to be
adjusted with a well defined impact (e.g., so-calledproperties) in order to give
ADBIs means to adapt preexisting components for their means without tamper-
ing at the actual component implementation.

Note that components are regarded in this thesis rather asabstract components
in a way that they could be provided for arbitrary component infrastructures. Thus
the FRAMBOISE component model incorporates no proposal of a component infras-
tructure. The prototypical implementations, however, are performed by means of the
Java programming system whereas component prototypes are realized as JavaBeansTM

[Javb] (cf Chap. 7).

Component Connection in FRAMBOISE

Components are assembled by plugging them into the appropriate insertion point of
the glue provided by the component framework. These insertion points are provided
in accordance with the specifics of the respective ECAS. A scripting facility enables
the ADBI (and the generator tools addressed in Section 3.5.1) to configure the glue
correspondingly.

The implicit invocation of component services as they are provided by message-
oriented connections support reuse and ease system evolution [SN92]; hence these
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mechanisms are mandatory for FRAMBOISE. The flip side of the coin is that com-
ponents basically relinquish control over the computation performed by the overall
system if they interact by a means of implicit invocation. A component that sends
a message implicitly neither can rely on the order the components interested in this
service are invoked nor does it know when all invocations associated with a specific
message are finished. Furthermore, reasoning about correctness can be problematic
[GS94], in contrast to traditional invocation mechanisms like procedure calls, where
one needs only consider a procedure’s pre- and postcondition when reasoning about
an invocation of it.

It is, however, mandatory that the construction process of FRAMBOISE asserts
to an ADBI that the rule execution behaves in accordance with the rule execution
semantics defined by the knowledge and rule execution model of the respective ECAS.
As a consequence, message-oriented connections shall not be discernible for an ADBI
but they shall be marshaled by facilities of the component framework implementation
in order to ensure correct behaviour. From the point of view of an ADBI a service that
is declared in the “required interface” (cf. Section 4.1.1) shall be invoked explicitly.
Thus it must be feasible to circumvent the message-oriented connections by invoking
a service of a known (i.e, whose availability is ensured by the component framework)
component directly.

The FRAMBOISE Component Schema

A component model also comprises the specification of the information to be stored
and packaged together with a software component. This specification is called the
FRAMBOISE component schema. Inspired by a presentation of the REBOOT Com-
ponent Model [Kar95] the FRAMBOISE component schema is presented in an entity
relationship notation as depicted in Figure 4.1 Note that the granularity of the informa-
tion related to the software component is not fixed. It is conceivable to subdivide any
information – represented by the shaded boxes – related to the component into smaller
entities (e.g., test support might be decomposed into single test cases) with indepen-
dent relations to the reusable component. For the sake of readability, however, these
entities are not decomposed any further here.

Classification Information Theclassificationof a component is the information in-
tended to identify and retrieve a component. The chosen classification schema is dis-
cussed in Section 8.2 in the context of the actual component provision.

Quality Information This information describes the quality and reusability of a
component in order to enable an ADBI to decide whether a candidate component
meets the respective requirements. Furthermore, the qualification information con-
tains the reuse history of a component. A reuser can record any critical or positive
comments about the component, any problems that occurred when reusing it and how
the problems where solved.
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Figure 4.1: The FRAMBOISE Component Schema

Administration Information It includes general information like references to the
developer and the current maintainer and a development as well as a maintenance his-
tory. Furthermore the administration information includes attributes pertaining to an
authorization schema so that the administrator of the component repository is able to
grant rights to developers for sensitive components in order to enforce, for example,
glass box reuse for a sensitive component. In a commercial environment pricing in-
formation would also be attributed to the administration information, however, for the
FRAMBOISE research project, we leave this element apart.

Documentation The documentation complements the classification and the qual-
ity information by describing the exact functionality of a component and how this
functionality is internally achieved (e.g., by explaining internal data structures of a
component). Hence the documentation assists an ADBI by selecting the appropriate
component out of a set of similar ones as well as by adapting a component. In a nut-
shell, the documentation corresponds to a description of building blocks in a class or
module library.

Test Support Although components are tested before inserting them into the repos-
itory, it is necessary to test them again when they are reused, maintained or adapted.
Since the construction of good test suites is a costly activity, it is mandatory to have
these test suites available together with the reusable component. Test support compre-
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hends test fixtures (programs written specifically to test the component), test data on
which to run them and information about the expected results. Note that the relation-
ship between a software component and the test support is N:M, because a reusable
component may have many alternative test suites whereas one test suite may be appli-
cable for various components.

Interface In the FRAMBOISE component model, interfaces are considered in the
sense of Section 4.1.1 as a contractual specification of the services to be fulfilled by a
component. Interfaces are stocked as distinct entities in the FRAMBOISE component
repository, which are related with a M:N relationship to the components that fulfill the
respective interfaces.

Interfaces are preferably defined by means of specializedinterface definition lan-
guages(IDLs) which abstract from specific implementation languages. The interface
definitions are subsequently processed by so-called IDL-compilers that map among
other things the interface definitions to constructs of specific programming languages
and register the components interface in repositories. Nowadays most prominent ex-
amples are OMGs CORBA IDL and Microsoft’s COM IDL. An approach proposed in
[BBK+97] is adopted. It provides a convenient way to make the context dependencies
of a component explicit. This approach is presented in greater detail in Section 7.2.1.

Code Elements Program constructs like modules or classes and their compiled bi-
naries do not comply with the strict notion of a software component given in Section
4.1.1. Thus the code elements (i.e., source and binary code) that are required to im-
plement an atomic component (i.e., those not composed out of other components) are
stored as separate entities in the component repository.

Composite Components Composite components are at least partially composed out
of other components which are calledSubcomponents. In order to enable an ADBI
to navigate fromSupercomponentto candidate subcomponents and vice versa, the
composite relationship is also registered in the component repository. A component
does not mandatorily participate in this relationship, i.e, an atomic component is never
a supercomponent whereas there are top level components (e.g., entire ECASs) which
are never subcomponents in the context of FRAMBOISE.

4.2 The Architecture Model

Architecture models are means to express the architectural level of system design,
which is concerned with the gross structure of a system as a composition of interacting
parts [MKMG97]. Thus, architecture models are a collection of conceptual tools for

51



www.manaraa.com

describing the structures of software systems1, functional aspects of their constituents,
the relationships between them as well as consistency constraints.

Even though it has long been recognized that the appropriate software architecture
of a system is a key element for its long-term success, architectural design is still a rel-
atively young software engineering discipline. Therefore, a well-accepted taxonomy
of architectural paradigms did not appear yet, let alone a fully-developed theory of
software architecture [GS94]. Strictly speaking, there is not even a single, universally
accepted definition of the term software architecture. Instead, a plethora of definitions
have emerged that typically agree on the major ingredients of an architecture – struc-
ture, components and connections among them – but vary widely in their details and
are not interchangeable. It is therefore mandatory that we establish an architecture
model by defining how the various terms are perceived in FRAMBOISE.

The subsequent paragraphs are chiefly a compilation of the literature into a coher-
ent ensemble that enables a systematic architecture design. Upon clarifying the notion
of a software architecture in Section 4.2.1, the concept ofarchitecture stylesthat en-
compass the key elements of architecture modeling is introduced. Subsequently the
termsreference modelandreference architectureare clarified. They are means to de-
sign architectures that are applicable to design families of software systems. Section
4.2.4 presents anarchitecture definition languagethat enables the formal description
of software architectures. Finally, the architecture model underlying the FRAMBOISE
component framework is introduced in Section 4.2.5.

4.2.1 The Notion of a Software Architecture

In this thesis architectures are conceived according to the following definition.

The software architecture of a program or computing system represents
the structure or structures of the system, which comprise software compo-
nents, the externally visible properties of those components and the rela-
tionships among them [BCK98].

The statement that an architecture may have multiple structures means that different
aspects (e.g., the module or class structure, the process structure, data flow etc.) of
the samearchitecture may be highlighted by individual structures. The termexter-
nally visibleproperties refers to those assumptions that other components can make
about a specific component, such as services provided, performance characteristics,
shared resource usage etc. Behavioral aspects of components may be part of the ar-
chitecture insofar as that behavior affects other components. Due to this emphasis of
the externally visible component properties, the above definition of software architec-
ture harmonizes particularly well with the requirements of component-based software
engineering.

1Unless stated explicitly otherwise, we apply the term “architecture” always restricted to the archi-
tecture of software systems
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Architectures are also considered as a specific reuse technique [Kru92], represent-
ing significant design decisions that are reused as a whole. The reuse of architectural
and design experience is regarded for such a beneficial impact on development costs
and software quality of systems with similar requirements, that [Szy97] even claims it
as the “probably single most valuable strategy in the basket of reuse ideas”.

4.2.2 Architecture Styles

In current practice, the codification and reuse of architectural designs has occurred
chiefly through the informal use of architectural idioms. For example a system might
be defined architecturally as a “client-server system”. Such classes of architectural
idioms have been termed asarchitectural styles[AAG93]. An architectural style char-
acterizes a family of architectures that are related by shared structural and semantic
properties. It consists of a vocabulary of design elements, patterns of their runtime
control and data transfer and finally a set of design rules that determine the composi-
tion of the design elements.

Architecture design research has identified a variety of architecture styles (for a
comprehensive overview cf. [Sha96, MKMG97]) and classified them asarchitectural
patternsthat help a designer to map these styles2 to the needs of the problem at hand
in order to determine the basic scheme of an architecture.

The description of each pattern can be structured as follows [Sha96]

Problem What problem the pattern addresses i.e., the characteristics of the application
requirements that lead a designer to select this architecture style.

Context Which aspects of the computation environment or implementation constraints
restrict the designer in the use of the respective style.

Solution The system model captured by the architecture style. It includes a descrip-
tion of thecomponentsthat are part of this style, theconnectorsthat mediate
interactions among components and thecontrol structurethat governs the exe-
cution.

Diagram A figure showing a typical pattern, annotated to show the components and
connectors.

Significant Variants Major variants of the basic style (if any).

Examples References to examples or more extensive overviews of systems that apply
this architecture style.

This roster enables the classification of architectural styles as shown in the following
example.

2Note that architecture styles are rarely applied in their pure form. Most systems involve some
combination of several styles.
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Architecture Style “Layered Systems”

Probably the most prominent architecture style is represented by the so-calledlayered
systems, where components are assigned to layers in order to control component inter-
action.

Problem This style is adequate for systems that involve distinct classes of services
that can be arranged hierarchically. Typically there are basic system-level ser-
vices, covered by layers that provide utilities used by many applications and on
top layers for application specific tasks. There are several benefits of this archi-
tecture style that have been empirically verified [ZWH95]. First, layered sys-
tems support design based on increasing levels of abstraction, thus enabling im-
plementors to partition a complex problem into sequences of incremental steps.
Second they support enhancement because changes to the functionality of one
layer affect at most the two neighboring layers. Third, they support reuse be-
cause different implementations can be used interchangeably, provided that they
support the same interfaces to their adjacent layers.

Context Layers are often used at higher levels of design, using different styles to
refine the layers.

Solution

• System Model:Strict hierarchy of opaque layers, i.e., each level communi-
cates only with its direct neighbors.

• Components:Usually composites which are most often collections of pro-
cedures.

• Connectors:Typically procedure calls.

• Control Structure:A single thread.

Diagram Shown in Figure 4.2. Layered architectures are sometimes drawn as con-
centric circles. In that case,lowestlayers becomeinnermost.

Significant Variants Not all systems are easily structured in a layered fashion be-
cause it can be quite difficult to find the right levels of abstraction. Even if it is
feasible to structure a systemlogically into layers, performance considerations
may require closer coupling between high level functions and their lower level
implementations. In fact, layered systems are in practice frequently not “pure”
because functions in one layer may call operations that are located in other layers
than the one immediately below. This is calledlayer bridging.

Examples One of the first concise presentation of this idea, in the context of the op-
erating systems architecture, was Dijkstra’s article on the THE operating sys-
tem [Dij68]. The architecture of DBMSs is often also organized into layers
[Hae87, HR99].
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Figure 4.2: An Example for the Layered Architecture Style

The use of architecture styles has a number of significant benefits [MKMG97,
PW92]:

• Architecture styles leverage design reuse, because it enables to reapply routine
solutions with well-understood properties with confidence to new problems.

• Application of architecture styles also can lead to significant code reuse, because
the invariant aspects of an architectural style often lend themselves to shared
implementations.

• It is easier for others to understand a system’s organization if conventionalized
structures are used.

• Standardized architecture styles support interoperability.

• By constraining a design space, an architecture style often permits specialized,
style-specific analysis (e.g., deadlock detection for client-server message pass-
ing).

• It is usually possible and desirable to provide style-specific graphical descrip-
tions of design elements. This makes it possible to provide graphical renderings
of designs that match the engineers’ domain specific intuitions about how their
designs should be visualized.

• Architecture style embodies those decisions that typically suffer erosion and
drifts (also known asarchitectural decay) during implementation and subse-
quent evolution when a software system undergoes maintenance.

Architecture styles are less constrained and less complete than specific architectures.
There is, however, no hard dividing line between where architectural style ends and
software architecture begins [PW92].
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4.2.3 Reference Models and Reference Architectures

After a critical mass of systems for a specific purpose have been developed, so-called
reference modelsare formed. These are commonly accepted functional decomposi-
tions of the respective task into parts that cooperatively solve the respective problem.
It is for instance possible to enumerate the standard elements of compilers (e.g., lexi-
cal analyzer, code generator etc.). However, reference models are no architectures in
the sense of the above definition, because the separation and interaction between the
components is not specified precisely and can vary from system to system.

In contrast to a reference model that divides the functionality of a system, arefer-
ence architectureis the projection of that functionality onto an effective system decom-
position, i.e., onto components that provide the functionality defined in the reference
model and the interactions between the components. The mapping between elements
of the reference model and components of the reference architecture is not necessar-
ily one to one (even though this may occur occasionally). Thus a software component
may implement a part of a function or it may provide several functions of the reference
model.

Reference architectures are the way architectures are reused across multiple sys-
tems. They are complementary to architecture styles, because the latter involve one
single “architecture philosophy” applicable for arbitrary application domains, whereas
a reference architecture may incorporate several architecture styles but is outlined for
one specific purpose. Typically, a reference architecture is developed by applying
one or several architecture styles on a reference model to achieve the final system
decomposition. The dependencies between reference models, architecture styles and
implemented software architectures are depicted in Figure 4.3.

Reference ModelArchitecture Styles

Reference Architecture

Map Styles to Reference Model

Design Specific System

System Architecture

Figure 4.3: Stages of Architecture Design

The benefits of reference architectures are threefold: First, they enable the appli-
cation of generative construction techniques which require that the final products are
aligned according to a reference architecture [BCK98]. Second, they are a basis for
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designers to derive the software architecture of the respective system under develop-
ment by refining and extending the reference architecture. Third, if the target system
is developed by composing it of prefabricated software components, reference archi-
tectures help a designer to identify constraints on the components that components
must fulfill to be applicable. Thus, by studying a reference architecture, a designer is
able to understand the concepts embodied in a component library which in turn has an
enormous leverage on the ease to find adequate components. Note that the opportu-
nities to reuse components generally improve when specifications for components are
constrained at least at the architectural level [PW92].

4.2.4 The Architecture Specification Language WRIGHT

Informal descriptions of software architecture give an intuitive picture of the respective
system’s structure but do not provide enough aspects to begin a detailed component de-
sign. Representing an architecture largely by annotated box-and-line drawings makes
it hard to pin down specific effects of service invocations and component interactions.
For instance, this kind of abstraction is not concise enough to resolve directly how the
various elements in an ECAS and its associated DBMS are synchronized in order to
process rules triggered by database events.

The so-calledarchitecture description languages(ADLs) are a linguistic approach
to describe software architectures formally and address the shortcomings of informal
representations, allowing early analysis and feasibility testing of architectural design
decisions. It is nowadays accepted that ADLs are a sensible approach to specify soft-
ware architectures authoritatively, even though nearly all of these languages (for a
comprehensive overview cf. [Med96]) are still in the research stage and it is premature
to choose any of them as most promising.

The architecture description language WRIGHT [AG94, AG97, All97] is used to
specify software architectures in FRAMBOISE. WRIGHT supports reasoning and for-
mal manipulation but is nevertheless a vehicle of expression that matches the intuitions
and practices of a software designer. The language is built around the basic architec-
tural abstractions ofcomponents, connectorsand configurations, providing explicit
structural notations for each of these elements. The behaviour and coordination of
components and connectors are specified in WRIGHT by means of a notation based
on the process algebra CSP (“Communicating Sequential Processes”) [Hoa85]. This
formalism was originally devised by C.A.R. Hoare [Hoa85] as a notation and theory to
describe systems as a number of elements (processes) which operate independently3

and communicate with each other through well-defined channels. Besides being a
notation, CSP is also a collection of mathematical models and reasoning methods to
analyzeconcurrent systems. Thus, WRIGHT enables a designer to write down an ar-
chitectural description precisely and to validate this description subsequently for con-

3The restriction that processes must be sequential was removed between 1978 and 1985, but the
name CSP was already established.
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sistency and completeness. A detailed presentation of WRIGHT is given in Appendix
A.

4.2.5 The Architecture Model of FRAMBOISE

This section concludes the above discussions by establishing the architecture model of
FRAMBOISE.

Purpose The architecture model of FRAMBOISE focuses on the structure of ECA
Systems. This structure comprises software components, the externally visible prop-
erties of those components and the relationships among them [BCK98]. The focus of
the architecture model is the specification and analysis of interactions between archi-
tectural components.

As a construction system, FRAMBOISE is outlined to furnish a family of similar
products, namely the various ECA Systems. Thus the architecture model is outlined to
specify reference architectures as discussed in Section 4.2.3 instead of system archi-
tectures. The reference architecture of the ECA Systems serves as a blueprint for the
ADBIs to compose a specific ECAS.

Ingredients The architecture model of FRAMBOISE is formed by the following
ingredients:

• Componentsrepresent the primary computational elements and data stores of
system. Intuitively they correspond to the boxes in box-and-line descriptions of
software architectures. Typical examples of components include such things as
client, servers, filters, objects blackboards and databases.

• Connectorsrepresent interactions among components. Computationally speak-
ing, commectors mediate the communication and coordination acitvity among
componants. That is, they provide the “glue” for architectural designs and intu-
itively, they correspond to the lines in box-and-line drawings.

• Architecture Patternsthat generalize solutions for specific architectural (cf. Sec.
4.2.2).

• The architecture definition languageWRIGHT to formalize the respective ar-
chitecture.

Procedure The reference architecture of the ECA systems is devised according to
the procedure depicted in Figure 4.3, i.e., a reference model of ADBMSs is mapped
onto a set of architecture styles. Architecture design is accomplished if the respective
architecture is formally specified in WRIGHT. Thereby the respective design must
hold against the correctness criteria of this architecture description language (cf. App.
A).
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Chapter 5

Process Definitions

In order to furnish an active database construction system it is necessary to define the
so-calledinstance unbundling processand theinstance rebundling process1 (cf. Sec.
3.5.2). These two processes guide the activities to decompose ADBMSs into reusable
components (unbundling) and and to rebundle them into novel systems.

Since bundling-oriented database construction is still in its infancy, there are no
proper process models to perform un- and rebundling. Hence this chapter develops a
novel unbundling and a (re-) bundling process from scratch. The chapter is organized
as follows. Section 5.1 discusses principal issues concerning software development
for reuse and software developmentwith reuse and how these activities are combined.
Subsequently the FRAMBOISE unbundling process is presented in Section 5.2 and
the rebundling process in Section 5.3. Section 5.4 concludes the chapter.

5.1 Reuse-Oriented Software Processes

In traditional software process models2 such as the waterfall model, software reuse is
not considered to be an explicit part of the process. Instead, these life cycle models
are outlined to develop systems from scratch [Sam97] (even though some reuse might
happen in the implementation when programmers adapt previously written code) with
the primary goal to get the respective system finished. Typically no attention is paid to
whether there might be some components of the system to be considered for reuse in
other projects.

Considering reuse implies that the overall software development process is split
into two complementary (Sub-) processes: namelydeveloping software for reusewhich
is denoted with the termcomponent engineering3 when reusable components are pro-

1For short this processes are addressed simply as unbundling and rebundling process respectively.
2A software process model is defined as a set of activities, methods, practices and transformations

that people use to develop and maintain software and the associated products [SW94]
3Since FRAMBOISE is a component framework, to software development for reuse is referred to

exclusively as component engineering.
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vided [Sam97] andapplication engineering[Sam97] which is concerned with the de-
velopment of systems by reusing components. This division is sketched in the so-
called twin life cycle model[Kar95] (cf. Fig. 5.1). The artifacts provided from the

Analysis Models Generic Designs Components

Component Reuse

Domain Analysis Component Development

Application Development Application Engineering

Component Engineering

Figure 5.1: The Twin Life Cycle

component engineering process are usually stocked in repositories and are retrieved
therefrom when application engineering takes place. Hence repositories form the tan-
gible link between these two activities [Sam97]. The principal issues of the two devel-
opment processes are discussed in the subsequent paragraphs.

5.1.1 Component Engineering

Component engineering (respectively development for reuse) is defined as theplanned
activity of constructing a software component for reuse in other contexts than for which
it was initially intended[Kar95]. It is a widespread misconception that a component
library can be created cheaply by extracting and documenting components of existing
monolithic systems. Software building blocks that are created as part of a specific
application are unlikely to be reusable immediately [Som92], because they are typi-
cally streamlined towards the requirements of the system in which they are originally
included. It is therefore necessary to decompose the respective original systems to
reengineer their constituents so that they become reusable. This form of component
engineering is referred to as unbundling (cf. Sec. 3.1.3).

In spite of gaining the components by unbundling preexisting systems or by de-
veloping them from scratch, the essence of component engineering remains the same.
In either case component engineers must identify the requirements of potential users
with similar needs and design a general solution which can be adapted economically
to satisfy as many requirements as possible [BB91]. We discuss in the next section the
principal activities of component engineering, followed by a presentation of compo-
nent generalization techniques.

Principal Activities

Component engineering basically involves all activities typically found in traditional
software development processes (e.g., Analysis, Architecture Design, Implementation
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Testing etc.). The principal difference is that the functionality of the identified com-
ponents is extended and generalized in order to capture the requirements of future
applications.

The following steps are considered as necessary to develop software for reuse
[Kar95]:

1. Collecting the set of requirements to make an initial solution.

2. Definition of an initial solution or identification of previous solutions to the same
set of requirements.A cost estimation for developing the actual solution should
be made or updated at this time.

3. Identification of possible generalizations. This is the inventive step in which the
component engineers try to see the generality in the initial requirements and so-
lution. At this step the components reuse potential should be discussed with the
product management and the plan for the subsequent steps should be redefined.

4. Identification of potential reusers and their requirements.Information about
potential reusers is important to ensure that the generality to be included in the
components is really justified.

5. Estimation of the cost and benefit of added functionality.For each added re-
quirement the component engineers should estimate the benefit of the reusers
who will reuse it as well as the extra cost (e.g., time to understand and rule out)
for reusers who do not need the respective feature. Furthermore, one should also
estimate the effort a reuser needs to develop the functionality from scratch, and
the probability that the component will be reused.

6. Analysis of the added requirements with respect to invariants and variation.

7. Proposal of a generalized solution with specifications and cost estimates.

8. Presentation of the solution to reusers and reuse experts for validation and ap-
proval. Based on this input, it is decided whether the component is developed
for reuse.

9. Development and documentation of the solution.

In the present form, these steps are generic and are basically applicable at any stage of
a development process.

A typical project to provide a component framework basically proceeds as follows:
Starting with a domain analysis, which collects among other things a number of ex-
amples, a first version of the component framework is designed. This initial version
typically relies almost exclusively on whitebox abstractions and enables just the im-
plementation of these examples. Afterwards the component framework is used to build
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applications which point out critical points in the design, i.e., the parts of the frame-
work that are hard to change. Experience leads to improvements in the framework,
which permit more effective blackbox reuse. Eventually the component generaliza-
tions are good enough that suggestions for improvement become rare. At some point
the developers have to decide that the component framework is finished and release it.

Component Generalization

Components are basically generalized by means of four techniques [Kar95] which are
applicable for components of all sizes:

Widening A component is generalized by widening its scope, i.e., its requirements
are extended insofar as it is feasible to identify a set of requirements that are not
contradictory.

The benefit of widening is that a widened component can be reused without fur-
ther modification and that it is more likely that it is reused in future applications.
Disadvantages are, that the initial development costs of such a component are
higher and that the component may become unnecessarily complex. Moreover,
the component may have more functionality than is used in most reuse contexts
which may lead to inefficiencies in execution speed and memory usage.

Narrowing This is the complementary operation to widening as one narrows the
scope of components and limits their functionality to a set which is required by
several applications. This is achieved by identifying functionality that is com-
mon to the known application cases and representing it by an abstract compo-
nent. Narrow components build the base for various extensions that are imple-
mented inseparatecomponents.

Advantages and drawbacks of narrowing are complementary to those of widen-
ing. A specific disadvantage of narrowing is that an immense number of similar
components may make it difficult to choose the right one.

Isolation Specific requirements are isolated to certain components or parts of compo-
nents. Thus it is feasible to construct the other components rather independently
of whatever specialization is chosen. Isolation is typically used to separate com-
ponents from system-specific parts like operating systems or hardware.

Configurability Configurability means that we build a set of smaller components
which can be composed in various ways in order to meet different needs in-
stead of building a (large) component satisfying all requirements. This approach
is especially useful for optional requirements and for the separation of variant
and invariant functionality.

Generalized components may be reused even if the requirements of a certain software
system are more specialized and limited than the broad and general functionality of-
fered by the candidate component. The eventual overhead caused by unused functions
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must be seen as the price for increased productivity [Sam97]. Redundancy is corre-
spondingly taken into account for the sake of higher productivity, i.e., it may occur
that different components coincide in some of their functionality but all components
should be incorporated in the final system because of some other functionality.

Even though generalization is imperative to achieve reusable components there is
also the danger of over-generalization so that a proper balance between reuse potential
and ease of implementation must be found. However, it is far from trivial to decide
whether a component is reusable or not. [JF88] even concludes that the only way to
find out if software is reusable is to reuse it. It is therefore apparent that component en-
gineering bears more uncertainty and more overall project risks than the development
of a standard application. Not surprisingly the principal activities to develop software
for reuse as they have been presented in the previous section, include various control-
ling activities such as the evaluation of possible generalizations or the verification of
their reuse potential etc.

5.1.2 Application Engineering

Application engineering based on reusable components typically proceeds as shown
in Figure 5.2. This procedure implies a rather opportunist form of software reuse,

architecture
Design system

components
Determine

components
reusable 
Search for

components
discovered
Incorporate

Figure 5.2: Software Development with Reuse

because the availability of reusable components is not taken into account during the
system design phase. However, one can observe that other engineering disciplines
typically base their system designs on preexisting components [Som92]. That means
that the system requirements are modified according to available components as far
as the resulting set of requirements ensures an adequate solution. As a consequence
one must accept requirements compromises and the design might be less efficient.
However, in well-established engineering disciplines, the lower costs of development
and increased system reliability usually compensates for this.

A corresponding areuse-drivensoftware development process is depicted in Fig-
ure 5.3. Note that the most expensive task here is the understanding of the retrieved
components. The cost of understanding existing software at all levels, not only at the
implementation level, is usually seriously underestimated (e.g., [Kar95] assesses the
expenses for maintenance at 40 to 70 percent of the total cost).

The schema depicted in figure 5.3 addresses only the initial activities of application
engineering. It results in the specification of the components required to provide the
final system. More precisely this specification
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Figure 5.3: Reuse-Driven Development [Som92]

• identifies the components that can be incorporated “as is” in the future system,

• names the components that must be modified or adapted4 and specifies these
modifications, and

• specifies component that must be developed from scratch.

Once the system components are specified, they have to be provided either by re-
trieving them from the repository, or by modifying/adapting existing ones or finally
by implementing them from scratch. Afterwards the components have to be inte-
grated into a coherent system. Finally, there are usually “debriefing” activities such
as the incorporation of new components into the repository as well as the evalua-
tion of components for their reuse potential and reporting of reuse experiences (cf.
[Kan87, HC91, Kar95]).

In order to enable systematic reuse, all these activities must be incorporated in a
software life cycle. A strict sequential procedure as suggested in the above figures is,
however, not practical for a component-based application engineering. Such proce-
dures basically rely on static requirements and are not suited to deal with incomplete
and inconsistent specifications as they occur in reuse-driven development processes.

Integrating the reuse activities into the well-known spiral model [Boe88] is sug-
gested in [Sam97]. Basically the tasks related to reuse are attributed to the appropriate
quadrant of the spiral (cf. Fig. 5.4).

• Quadrant I:The first quadrant of the spiral involves determining the objectives
of the system to be developed, identifying alternative solutions and constraints
imposed on them. Concerning reusable components, this means that application

4In the literature the termsmodificationandadaptationare not clearly differentiated. The percep-
tion of [Sam97] that suggests using adaptation for minor changes that were in some way planned by
component developers (e.g., parameterization) is adopted in this thesis.
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Figure 5.4: Boehm’s Spiral Model

engineers must understand the basic problem and identify components that could
be used to compose the target system.

Result of quadrant I is a number of candidate components and various solution
approaches depending on the functionality of these components.

• Quadrant II: In the second quadrant one evaluates alternatives and identifies and
resolves risks. Thus, the application engineers determine the need to modify
or adapt components, the effort necessary to accomplish the modifications and
the risk involved in doing so. Different solution approaches elaborated in the
previous quadrant are evaluated by risk and effort assessment. Risks have to be
determined by gathering more information about components or by experiment-
ing with them.

This quadrant results in the decision on the solution to be pursued and which
components to reuse, respectively what modifications/adaptations to make.

• Quadrant III: The third quadrant of the spiral comprises the development of
the next-level product. That means that the selected components have to be
modified/adapted and integrated into the subject system.

The result of this quadrant is the implementation of the system part to be devel-
oped.

• Quadrant IV:The fourth quadrant of the spiral involves planning for the next
phases. Concerning reusable components, the application engineers look back
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and evaluate reusability prospects of modified or new components in order to
incorporate them into the component repository. Furthermore, they add feed-
back about reused components and experiences to the corresponding repository
entries.

The use of the spiral model provides the means to test the development options for an
application in a limited context with controlled risks as it is necessary to experiment
with reusable software components. The spiral model is therefore particularly suited
as a basis for reuse-driven software development as it is suggested in Figure 5.3.

5.2 The FRAMBOISE Unbundling Process

The instance unbundling process of FRAMBOISE defines the procedure according to
which components are engineered. Thereby one must take into account that the intrin-
sic uncertainty and risk of component engineering projects is aggravated in FRAM-
BOISE for the following reasons:

• From the software engineering point of view, ADBMSs are still an immature
domain. It is therefore probable that certain mistakes in the domain analysis are
only discovered when components are designed or an ECAS is built.

• The component framework makes the parts of the design explicit that are likely
to change. Getting these interfaces and shared invariants right is a hard task.
Basically the only way to learn what should be changed and how it shall be
represented is by experience. Thus it is foreseeable that component designs will
be revised in later phases of unbundling.

• Paper designs are necessary abstractions to design a component framework,
however, they are not detailed enough to achieve the right component gener-
alizations. Instead, appropriate component generalization depends on proper
abstractions of examples found during domain analysis. In that sense the rar-
ity of industrial-strength active database applications increases the risk that the
component framework later undergoes major changes due to inadequate gener-
alizations.

It is therefore of paramount importance to base the instance unbundling process
on a method that is able to cope with frequent modifications and iterations in the de-
velopment process. A method calledExtreme Programmingis a viable procedure to
perform unbundling. This technique is discussed in the next section, followed by the
presentation of the the actual FRAMBOISE unbundling process (Sec. 5.2.2).

5.2.1 Extreme Programming

Extreme Programming (XP) [Bec99, Bec00] is a lightweight software development
method conceived to address specific needs of software development conducted by
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small teams in the face of vague and changing requirements. XP represents in its
essence a novel form of team-oriented, evolutionary software development. Unlike
conventional methods in which planning, analyzing and design activities are rather
outlined to cover the overall project, XP starts with a quick analysis of the entire sys-
tem whereby analysis and design decisions are continuously made throughout devel-
opment. A system under development is put into production in a few months, before
solving the whole problem. Nevertheless XP is by no means a chaotic “code and fix
development technique” but relies on a number of practices which are strictly enforced
to enable a fine-tuned control of the development process and to foster the communi-
cation among developers and customers.

The XP Development Cycle The XP development process is a cyclic activity that is
performed as follows: In the analysis phase so-calledstoriesare defined. Stories can
be thought as the amount of use case that will fit on an index card. Each story must be
business-oriented, testable and it must be feasible to estimate the effort to implement
it. Otherwise the definition of a story is not considered as completed and it might
eventually be necessary to split a story into smaller ones or to experiment with vertical
prototypes. The effort to furnish the software for a specific story is typically measured
in so-calledideal engineering time, which is defined as the time without interruption
where developers can concentrate on their work feel and fully productive.

The stories are grouped intoreleaseswhich settle the stages according to which the
project proceeds. Releases are realized by means of severaliterationswhose aim is to
put into production some new stories that are tested and ready to go. New releases are
made often – anywhere from daily to monthly.

The process starts with a plan that defines the stories to be implemented and settles
how the team will accomplish it.Iteration planningstarts by asking the customer to
pick the most valuable stories, among those to be implemented in this release. The
team decomposes the stories intotasks, i.e., units of implementation that one person
could implement in a few days.

Task implementationstarts with implementing the test cases in order to perform
unit testing. Programmers write (unlike to the cleanroom approach [CM90]) their
own tests whereby they write it before they code. Thus programmers must first of all
establish a list of test cases which is continuously condensed. The tests are collected
and they must all run correctly. New code is integrated with the current system within
small time intervals (usually a few hours). During integration, the system is built from
scratch and all tests must pass or the changes are discarded. The design of the system
is continuouslyrefactored, i.e., it is evolved through transformations of the existing
design that keeps all tests running.

Team Organization XP emphasizes close cooperation among the team members.
Probably the most striking feature of XP is the so-calledpair-programming, i.e., all
production code is written by two people at one screen/keyboard/mouse. The team
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works in a large room with small cubicles around the periphery whereby pair pro-
grammers work on computers set up in the center of this room.

A customer joins the team full-time and is responsible for the release planning and
the provision of larger-grained functional tests. Customers decide the scope and timing
of releases based on estimates provided by programmers. Programmers implement
only the functionality demanded by stories in the respective iteration. The shape of the
system is defined by ametaphoror a set of metaphors shared between the customer
and the programmer.

Finally the production code is considered as collectively owned by the team mem-
bers. That means that every programmer is allowed to improve any code anywhere in
the system at any time.

5.2.2 The Actual Unbundling Process

In order to establish the FRAMBOISE unbundling process, the XP development cycle
must be tailored to the main activities of component engineering described in Section
5.1.1.

The practices of XP are obviously appropriate to generalize components, because
component generalization requires continuous refactoring in order to achieve better
generalizations. Extreme programming has originally been devised for the develop-
ment of applications. We suggest the following modifications in order to apply XP for
the provision of reusable software components:

• Unbundling ADBMSs includes the development of several applications that use
specific ECASs in order to provide the feedback that component developers need
to refactor the generalizations. Of course these “pilot” applications will not ben-
efit from reuse – the benefits usually do not start to show until the third or fourth
application [FSJ99]. In contrast, their development is probably more expen-
sive on account of additional iterations which are due to component refactoring.
Since these extra costs are caused by unbundling activities they must be com-
pensated from the funds of the profiting unbundling project.

• FRAMBOISE is developed for third-party reuse. Thus the role of on-site cus-
tomer also includes programmers providing the applications that use the example
ECAS.

• Most of the stories applied in the unbundling process of FRAMBOISE are typ-
ically not business cases as it is common for XP. Instead the stories represent
specific facets of active database behaviour as they are outlined in table 3.1 or
they stem from ECA rules specified for the “pilot” applications. For instance a
story might be ”enable a conflict resolution scheme based on relative priorities”
or process the rule

ON TIMES(10,UPDATE TO employee.contracts):SAME customer
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IF salary < 5000
DO increment(employee.bonus)

• The reference architecture of ECASs captures the system metaphor so that ev-
eryone in the team knows how the system works. The architecture model intro-
duced in Section 4.2 is a means to describe and analyze the system metaphor to
set a basic map for the future component provision.

The FRAMBOISE instance unbundling process is depicted in Figure 5.5; it starts

Design Reference Architecture

Release Planning

Use Case Analysis Establish Reference Model

Task Implementation

Task Definitions

Artifacts in Repository

Iteration Planning

Domain Analysis

Service Definitions Architecture Styles

Vocabulary, Concepts, Applications

Stories

Component Definitions

Release Definitions

Figure 5.5: The FRAMBOISE Instance Unbundling Process

with a domain analysis that yields the vocabulary and concepts of active database tech-
nology as well as the initial applications. The domain analysis enables on the one hand
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the developers to identify and describe the stories that are implemented with the un-
bundled components. On the other hand the domain analysis is a basis to design the
reference architecture of the ECASs. Component frameworks incorporate architec-
tures of the systems to be built by means of them [Szy97]. In fact these architectures
are reference architectures as discussed in Section 4.2.3. Even though architecture de-
sign appears to be an issue of developmentwith reuse (cf. Fig. 5.2 and 5.3) a reference
architecture must be designed during the unbundling process. Decomposing a system
into reusable parts obviously begins at an architectural level and it is unthinkable to
develop reusable components without having any architectural vision in mind.

Henceforth, after the stories are described and the reference architecture is de-
signed, release planning is performed. Releases are basically defined according to XP
practice where the customer “picks the most valuable stories and groups them into re-
leases” [Bec00]. Release planning is, however, adjusted according to the given facts
of the reference architecture. That means an exclusively business-oriented priority list
may be overruled to be better able to generalize specific aspects. Upon release planning
the further unbundling process proceeds according to the common practices of extreme
programming, i.e., releases are broken down into iterations which are themselves split
into program tasks etc.

Note that the adoption of extreme programming implies that the unbundling pro-
cess incorporates also feedback loops which are not depicted in Figure 5.5. Continuous
refinement of the design and insights gained when a task is implemented eventually
lead to refactoring of code blocks, components or even of the reference architecture.
XP does not prescribe a well-defined procedure to perform such feedback loops. In-
stead, changes are principally coped with when they are detected, whereas the practices
of extreme programming (continuous integration and testing, collective ownership of
code etc.) ensure a stable development progress. We refrained ourselves therefore
from overcrowding Figure 5.5 with myriads of backward pointing arrows that clarify
nothing but confuse the reader.

5.3 The FRAMBOISE Bundling Process

The instance rebundling process in FRAMBOISE represents in its essence application
engineering as it is outlined in Section 5.1.2. Hence the FRAMBOISE bundling pro-
cess is also centered around the spiral model according to the suggestion of [Sam97]
(cf. Sec. 5.1.2). In the context of rebundling, we identify the following modifications
which are attributed to the various quadrants of Figure 5.4:

• Quadrant I:The first quadrant of the spiral involves determining the objectives
of the system to be developed, identifying realization alternatives and constraints
imposed on them. Determining the objectives to be developed means in our con-
text that the ADBI must identify the rule and knowledge model of the future
ECAS. On the one hand these models may be derived from a specific ADBMS
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proposal if such a system should be provided. On the other hand, it is conceiv-
able that active database functionality should be provided for specific application
systems. In that case the ADBI must beforehand identify which aspects of the
overall system should be realized by means of ECA rules in order to determine
the knowledge and rule model of the ECAS. Hence some aspects of rule devel-
opment (i.e., the so-calledrule requirement extractionor for shortrule extraction
[Vad99]), must precede the actual rebundling steps.

The constraints imposed on the rebundling activity are on the one hand the op-
portunities offered by the underlying DBMS to interact with the ECAS. On the
other hand there are timely and financial restrictions which may subsequently
enforce the selection of an alternative (e.g., it may be prohibitive to perform an
unbundling task so that an ADBI chooses an alternative relying on a downsized
knowledge model that renounces on several active features). Assuming that the
construction of an ECAS is not discarded at all, the result of quadrant I is the
specification of at least one ECAS with the identification of the candidate com-
ponents.

• Quadrant II: In the second quadrant, the ADBI evaluates the options and their
risks. The result of these activities is the decision on which ECAS is realized
and which components are reused, respectively what modifications/adaptations
are to be made.

• Quadrant III: The third quadrant of the spiral comprises the development of
the next-level product. That means that the selected components have to be
modified/adapted and integrated into a skeleton of the future ECAS.

The result of this quadrant is the provision of an operational ECAS.

• Quadrant IV:The fourth quadrant of the spiral involves planning for the next
phases. The tasks of this quadrant involve “debriefing” activities such as the
incorporation of novel components into the repository as well as the evaluation
of components for their reuse potential and reporting of reuse experiences.

The instance bundling process is illustrated in Figure 5.6. For the sake of clarity,
the instance bundling process is depicted as a sequence of activities. However, the
actual process control is performed according to the spiral model as discussed above.
the component engineering activity in Figure 5.6 involves black box (which includes
minor adaptations like parameterization) as well as white box reuse. According to
the complexity of the problem to be solved, white box reuse may result in an further
unbundling step which is covered by the above instance unbundling process.
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Figure 5.6: The FRAMBOISE Instance Bundling Process
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5.4 Conclusion

In this chapter the procedures to furnish FRAMBOISE with an initial set of com-
ponents and to build subsequently specific ECA Systems have been identified. The
courses of action described above are conceived as a basis to establish full-fledged
process definitions in a productive environment.

Thus, all preliminaries to effectively unbundle ADBMSs have been achieved ac-
cording to the meta process established in Section 3.5.3. It is therefore feasible to
define the reference architecture of the ECA Systems in the next chapter.
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Chapter 6

The Reference Architecture of ECA
Systems

This chapter describes the systematical architecture design of the ECA systems in de-
tail and comprises therefore one of the chief contributions of this thesis. Regarding
the state of the art in the domain of ADBMSs, a situation where one can consult an
authoritative source such as a textbook, adopt the solution to establish the reference
architecture and press on is far away. Even though researchers have developed a wide
range of prototype active database systems including a variety of architectural con-
cepts, a distinct perception of the architecture of active database systems did not result
so far, let alone of a concept suited for a component-oriented approach like FRAM-
BOISE. Since any ADBMS must provide facilities to manage rules as well as to detect
events and execute rules, many of the suggested architectures coincide in some of their
chief elements. However, these proposals still vary considerably, because they are
typically streamlined to enable the implementation of the respective prototype. As a
consequence it is necessary to design the reference architecture of the ECASs accord-
ing the procedure described in Section 4.2.3 (Fig. 4.3).

The chapter is organized as follows: Section 6.1 develops a reference model of
active database functionality suited to unbundle ADBMSs. This reference model is
subsequently mapped in Section 6.2 to an architecture style that settles the central
theme of the reference architecture. Section 6.3 concludes the chapter.

6.1 A Reference Model of Active Database Functional-
ity

According to the definition of a reference model (cf. Section 4.2.3), this section iden-
tifies a functional decomposition of ADBMSs into parts that cooperatively provide
active database functionality. The starting point is the assumption discussed in Section
2.4 that any ADBMS must provide means to define and manage rule definitions, to
detect events and to execute rules whereas these facilities must interoperate with the
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“traditional” DBMS services as shown in Figure 2.3.
The reference model is elaborated from two points of view: First in Section 6.1.1

the functional decomposition of the major subsystems of Figure 2.3 is discussed. This
implicitly assumes a rather tight coupling between the active and the passive DBMS
parts. Afterwards, Section 6.1.2 examines which parts are additionally required when
active database functionality is conceived as a service that is decoupled from a DBMS.

6.1.1 The Main Parts of an ADBMS

The main parts of an ADBMS are grouped in two categories, i.e., one for rule man-
agement and another for rule execution which are in turn discussed subsequently.

Rule Specification and Registration

In this paragraph the basic functions involved in the specification of rules as far as the
ADBMS proper is concerned (i.e., design tools providing rule specification facilities
are not considered) and their registration within the system are identified. The registra-
tion of a new rule in a rulebase requires a series of administrative processes for which
the respective facilities must be provided. They are schematically depicted in Figure
6.1. Rules are usually specified by means of a rule language that is processed through
a specific compiler. The front end of such a compiler typically performs lexical and
syntax analysis whereas its backend performs the semantic analysis as well as the code
generation. Code generation must be seen in this case as the extraction of the event,
condition and action definition as well as of control information like coupling modes,
priorities etc. and their mapping to rule creation commands for the rule management
subsystem. Code generation causes in turn that the respective definitions are stored
persistently in the rulebase, initializes the event detection mechanism if the respective
event is not already known to the system, and compiles and links condition and actions
and stores them within the condition/action library which is considered as a special
compartment of the rulebase.

The Rule Execution Subsystem

Rule execution involves all activities from event detection until the eventual invocation
of DBMS commands or external programs as a result of action execution as shown in
Figure 6.2. Event detection subsystems are typically split into event detectors and
event handlers. Event detectors are those elements that detect the occurrence of an
event in the sense of the semantics of the event definition. The identification of the
rule(s) that are triggered can either be done by a specialized event handler that knows
locally what rules are to be fired once the event has been raised or through the use of a
separate registration mechanism and an additional lookup. Furthermore event handlers
typically log all event occurrences and their parameters. Event logging as well as event
composing can be a major performance factor in ADBMSs.
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The rule processor can be roughly subdivided in a rule scheduling mechanism de-
termining the next rule instances to be executed and a specific executor that invokes
the respective conditions and actions.

Rule scheduling and execution is highly dependent on the DBMS’s transaction
management and must be synchronized with the execution of user transactions. How
user transactions and rule execution are synchronized depends on the transaction model
of the DBMS, the interfaces to the transaction manager provided by the DBMS and
the way the ADBMS takes advantage of the provided facilities.

Figures 6.1 and 6.2 are related twofold: On the one hand, the event detectors that
belong actually to the rule execution subsystem are informed by the rule registration
subsystem about the events they have to monitor. On the other hand, the event handler
identifies the rules to be triggered by querying the rulebase which is part of the rule
management subsystem. For the sake of readability, these interdepedences are omitted
in Figure 6.2.

The “active” (w.r.t. database functionality) and the “passive” parts of a rule execu-
tion subsystem are typically closely coupled. This is illustrated by drawing some event
detectors in Figure 6.2 within the “traditional” elements. That means that they are so
closely related that it is quite impossible to distinguish where the passive part and the
active begins.

On the one hand this tight coupling is necessary to be able to perform active
database behavior at all (e.g., detection of database events must take place within the
passive DBMS). On the other hand such a close coupling is sometimes also necessary
to perform with the required runtime efficiency.

6.1.2 Separating the Active Mechanisms from the DBMS

Some the active database projects anticipated the necessity to build ADBMSs at least
partially out of preexisting parts e.g., as layer on top of a passive DBMS [GGD+95b]
or by implementing the ADBMS as an extension of a database construction toolkit
[CKTB95, BZBW95]. Nevertheless, none of these architectures has been designed for
a reuse-oriented or even component-based approach so that ADBMSs still tend to be
monolithic software systems.

The first ideas to separate active database functionality from the DBMS in order
to provide so-calledactivity componentswere discussed in [GKvBF98]. A series of
consecutive unbundling steps sketch various generic architectural proposals that can
be used as a starter-kit to initiate the unbundling of active database mechanisms for a
specific purpose [KGvBF98]. Figure 6.3 depicts an unbundling step separating the ac-
tive functionality from the DBMS as anactivity servicethat includes rule management
and rule execution. Since rule management can exploit database services to store the
rule base persistently and rule execution requires the ability to detect database events,
to evaluate conditions, and to execute actions both chief tasks of an activity service are
related to passive database functionality. The passive database manager is involved in
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Figure 6.3: The Reference Model of Unbundled Active Database Systems.

rule execution as an important event source, as well as to evaluate conditions that refer
to database states and execute actions modifying the database.

Figure 6.3 focuses on the connection mechanisms that must be provided in order
to furnish a stand-alone active database service. These mechanisms – depicted as
diamonds1 in Figure 6.3 – are considered as “fat connectors” that provide substantial
functionality in order to mediate the respective interaction.

Hence the interaction of the activity service with its environment is on the one hand
regulated by theexternal event detection, external action executionand therule base
modificationconnector. The latter allows clients to modify a rule base (e.g., to add
rules). The external event detection connector gives external clients (e.g., the system
clock or an application program) the opportunity to raise events of their own (abstract
events). The external action execution connector enforces the execution of actions
taking place at some external client.

Thedatabase event detectionconnector regulates the interaction between database
related event detection mechanisms (e.g., proprietary event notification mechanisms
that reside in the respective DBMS) and the activity service. It determines what type
of events the DBMS produces and to what events the event service subscribes to. Ac-

1Architectures consisting of components and connectors can be described by means of ER-style
diagrams, denoting components as rectangular boxes and connectors as diamond-shaped relationships.
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cording to the event semantics and rule execution guidelines, the connector may ad-
ditionally enforce further activities in order to synchronize the DBMS and the rule
processing task. For instance, it might block the triggering transaction until all trig-
gered rules are processed.

In order to evaluate conditions and to execute database actions, the activity service
cooperates with the database manager via thecondition evaluationand thedatabase
actionexecution connectors. These connectors require database access capabilities as
provided by the database access connector2. Moreover, they require a transaction ser-
vice allowing database accesses to be performed as part or subtransaction of a trans-
action performed on behalf of some client (at least if all coupling modes are to be
supported). If the database manager requires that access commands are statically com-
piled before they are executed (as opposed to dynamic invocation), the corresponding
compilation is also performed via the condition evaluation or database action execu-
tion connector during a rule base modification. Furthermore, the activity service may
also make direct use of the database access connector in order to store and manage
rules persistently (not shown in the Figure 6.3).

6.2 The Design of the Reference Architecture

The most obvious approach to design the reference architecture of the ECASs were to
take the components of our reference model of ADBMSs “as is” and couple them by
means of so-calledevent-based implicit invocation. The idea behind the implicit invo-
cation architecture style is that instead of invoking services provided by other compo-
nents directly (e.g., as a procedure call), a component announces one or more events.
Other components in the system can register in an event by associating a procedure
with an event. When the event is raised, the system invokes all of the services that
have been registered for the respective event. Thus an event announcement implicitly
causes the invocation of procedures in other modules. This architecture style promotes
loose coupling because any component can be introduced into a system simply by
registering it for the respective events. Hence the implicit invocation style strongly
supports reuse and eases system evolution [SN92].

However, the drawbacks of this architecture style make it unsuitable for FRAM-
BOISE. The primary disadvantage of implicit invocation is that components basically
relinquish control over the computation performed by the overall system. A compo-
nent that announces an event cannot rely on the order the components interested in this
service are invoked nor does it know when all invocations associated with a specific
event are finished. Also, reasoning about correctness can be problematic [GS94], in
contrast to traditional invocation mechanisms like procedure calls, where one needs

2The database access connector allows clients to establish a session with the database manager,
to start and end transactions, and to access or modify data items (e.g. relations, objects) within the
database. Thereby, the database manager synchronizes concurrent client accesses.
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only consider a procedure’s pre- and postcondition when reasoning about an invoca-
tion of it.

An architecture style that pervades the reference architecture of ECASs must pro-
mote concise reasoning about correctness in a better way than implicit invocation. It
is of utmost importance that the construction process of FRAMBOISE asserts that the
rule execution behaves in accordance with the semantics defined by the rule and rule
execution model of the respective ECAS. Thus the adoption of architecture styles that
structure the ECASs more concisely and prescribe clear patterns of interaction among
the components are preferred.

We design the reference architecture of the ECASs in a top-down manner, i.e., by
considering the ECAS as a black box that is decomposed subsequently into compo-
nents and subcomponents. In a preliminary step the basic interaction of an ECAS with
its environment is analyzed in Section 6.2.1. Subsequently Section 6.2.2 introduces
the architecture style that forms the underlying theme of the reference architecture.
The constituents of this elements of this preliminary architecture are decomposed in
Section 6.2.3 to achieve the actual reference architecture.

6.2.1 ECA Systems as Monolithic Service

The reference model of a standalone activity service depicted in Figure 6.3 corresponds
to a large extent to our conception of ECA Systems. An ECAS embraces the function-
ality of an activity service as well as that of the various diamond shaped connection
mechanisms (e.g., database action execution connector). However, the latter are con-
sidered as components of an ECAS, because it is misleading to address them in our
context as connectors. These facilities are henceforth calledadapters.

Even though Figure 6.3 gives a good intuitive picture of the problems to be coped
with, it leaves a number of fundamental questions unanswered. For instance this setup
does not indicate whether an activity service is a rule server for the passive DBMS or
whether it uses the DBMS as server to execute (database) actions. It is therefore wise to
specify an ECAS beforehand as a monolithic entity in order to analyze how an ECAS
interacts with its environment. The architecture definition language WRIGHT [AG94,
AG97, All97] (cf. Sec. 4.2.4) supports this procedure by permitting anincremental
approach to formalize a system. It is feasible to specify some of the architecture and
get immediate, valid results, without incurring the cost of a full specification. Then
one can add more to the specification and get more results without having to redo what
has been already accomplished.

First, two WRIGHT interface types3 are established. They define the “standard”
behaviour of a client that pulls requests from a server and its counterpart, i.e., a server
that pushes the results of a request to a client:

Interface Type IServerPush =open→ Operate2 §
whereOperate =request?x→ result!y→ Operate2 close→ §
3A description of the Architecture Definition Language WRIGHT is given in Appendix A
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Interface Type IClientPull =open→ Operateu §
whereOperate =request!x→ result?y→ Operateu close→ §

The following connector regulates a typical client-server interaction between two
components obeying the above interfaces:

ConnectorClientServer =
RoleClient = IClientPull
RoleServer = IServerPush
Glue = Client.open→ Server.open→ Glue

2 Client.close→ Server.close→ Glue
2 Client.request→ Server.request→ Glue
2 Server.result?x→ Client.result!x→ Glue
2 §

ECAS are specified as shown in Figure 6.4 as a single WRIGHT component with
several ports through which the ECAS sends or receives information and requests. The

ComponentECAS(nEvSrc: 1 . . . ; nEvCh: 1 . . . ;
nOpDef: 1. . . ; nOpChnl: 1. . . ; nRbClients: 1. . . ; C: Computation)

Port RbAccess1...nRbClients= IServerPush
Port EventDef1...nEvSub= IClientPull
Port EventChnl1...nEvSrc= IServerPush
Port OpDefs1...nOpDef = IClientPull
Port OpChnl1...nOpChnl= IClientPull
Computation = C

Figure 6.4: The WRIGHT Specification of an ECAS

following ports are defined:

• The RbAccess port enables an external client to access the rulebase of an
ECAS, whereby the ECAS acts as a simple server. Since various clients can
access the rulebase at the same time, this port is parameterizable with an integer
number, expressing the actual number of identicalRbAccessports.

• Through theEventChnl ports – addressed asevent channels– the ECAS re-
ceives event signals from event sources (external ones as well as the DBMS).
The ECAS acts again as a server, i.e., it receives event signals and has to pro-
cess eventually associated rules. As a result of the invoked server returns the
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signalling process to proceed, unblocks the triggering transaction etc. The event
signals and the results sent through a channel are transmitted in the proprietary
format of the respective event source whereby they are translated to and from an
ECAS internal format by the specific event adapters which are situatedwithin
the ECAS. Thus it is not necessary to distinguish at the architectural level be-
tween different type of event channels (i.e., such for the DBMS and such for
external event sources) but we can focus on the interaction pattern.

• By means of theEventDef ports an ECAS accesses event sources to subscribe
for the detection of specific event occurrences. For instance the definition of an
event to monitor updates in a database might imply that a corresponding trigger
is defined in the DBMS. Hence a (DBMS-specific) trigger definition command
is sent over the associated event definition channel. Since the ECAS requests
an event source to monitor an event occurrence, the communication along these
channels obeys a client-server pattern whereby the ECAS represents the client.

• Finally there are the channels to define conditions and actions and to invoke these
operations subsequently. These ports are addressed asOpDef and OpChnl ,
whereby the former are used to transmit commands to compile and link opera-
tions and the latter – theoperation channels– enable the invocation of conditions
and actions respectively. In contrast to the reference model depicted in Figure
6.3 there is no distinction between operation ports that interact with a DBMS
and those communicating with an arbitrary external event source, because they
obey all the same interaction patterns. Again there are ECAS internal adapters
providing the commands in a format understandable for the respective device.

• The computation part is simply described with the parameterC which acts as a
placeholderwhich is filled with a parameter when the ECAS is instantiated in an
actual configuration. Thus it is feasible to express different ECA Systems with
the same component description, whereby the actual instantiation ofCrepresents
the behaviour of the respective ECAS. The parameterC embraces also the sub-
sequent decomposition of the ECAS into subcomponents computation part as
it is feasible to instantiateC with a configuration representing the architectural
subsystems. Hence this nested description has an associated set of bindings,
which define how the unattached port names on the inside subcomponents are
associated with the associated port names of the ECAS components.

Note that it were in principle feasible to summarize the rulebase access, event defini-
tion and operation ports as one single port type without formally losing information
since these ports obey all theIClientPull interface. However the computation
parts became too complex in that case. Thus we prefer to divide into the above broad
categories. Nevertheless, an adapter is not necessarily related to exactly one port but it
is conceivable that several ports are associated to one adapter. For instance, a DBMS
adapter might provide one port to define triggers (programming the event detector),
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another port to define and compile stored procedures, one channel to send event sig-
nals and several channels to receive action commands in order to enable parallel rule
execution. Furthermore, ports may be multiplexed by specific connectors, so that their
behaviour appears to the outside as one single channel.

For an ECAS component conceived as monolith, the computation part can be de-
fined as a single CSP process that performs two main tasks. On the one hand it listens
at every event channel for event signals to perform the rule execution and on the other
hand it processes rulebase modification commands that are invoked via theRbAccess
port. These tasks are multithreaded activities (expressed by the CSP Operator‖ that
describes concurrent processes) as an ECAS must be able to process several events and
rulebase modification commands simultaneously.

Computation MonolythicECAS(nEvSrc: 1 . . . ; nEvCh: 1 . . . ; nOpDef: 1. . . ;
nOpChnl: 1. . . ; nRbClients: 1. . . ;) =

‖∀ i ∈ nEvSrc‖EventChnli.open→ Listeni

‖∀ j ∈ nRbClients‖RbAccessi.open→ ModifyRulebasej 2 §
whereListeni = . . .
whereProcessRulesi = . . .

Once an event channeli is opened the ECAS listens at the respective port for incoming
event signals or the command to close the channel as expressed by the processListeni.

Listeni = EventChnli.signal?request→ (ExecRulesi u Listeni) 2 EventChnli.close

Both CSP events4, i.e., signalling an event or closing the channel are equally possible
and are initiated by components residing outside of an ECAS (i.e., the CSP events are
written without an overbar). According to the consistency rule 5 (initiator commits cf.
Appendix A.3) an ECAS must be able to agree with both CSP events which is ensured
by the application of the external choice operator2. Once an event is signalled rule
processing takes place (defined in the CSP processExecRulesi) if there are any rules
associated for this event or the ECAS listens again to further event signals.

Note that the treatment of incorrect commands (e.g., an incorrect rule definition) is
not modeled at this level of abstraction. Concerning the specification of a reference ar-
chitecture it is sufficient to think for instance in terms of a rulebase administrator trying
out successive communications until finding the correct ones. It is also safe to assume
that signalled event occurrences are always matched by corresponding event defini-
tions in the rulebase. In that sense, any activities where the rulebase is queried during
the rule execution process are skipped for the time being. Instead they are modeled as
an internal (w.r.t. the ECAS) respectively non-deterministic choiceu whether any rule

4CSP uses the notion “event” as a fundamental concept of the formalism. In order to avoid a con-
fusion with the event notion applied in ADBMSs we refer to events in CSP exclusively asCSP events
whereas active database events are simply referred to as events.
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processing is initiated through an event occurrence or not. Using non-determinism to
elide details provides a nice balance between complexity and fidelity. It reduces com-
plexity, because no state must be maintained to indicate which subset is chosen but it
indicates that a choice is made. The correct choice will be a refinement of this abstract
specification and could be specified and analyzed in a more detailed specification.

The CSP process representing the rule execution, i.e.,ExecRulesi, consists basi-
cally of two consecutive operations which stand for the condition evaluation and ac-
tion execution. Both processes can be represented by the same CSP processOpExej,x
whereby the indexj is instantiated with the channel number andx with the result value
of the operation.

ExecRulesi = ∃ j ∈ 1 . . . nOpDef•OpExej,x; ∃ k ∈ 1 . . . nOpDef•OpExek,x;
Listeni 6< x 6= ∅ 6> EventChnli.result!x→ Listeni

The semicolon operator; allows to form a sequence of processes whereas the oper-
ation A 6< cond 6> B describes a choice between two alternatives that is based on
a conditioncond. Option A is chosen if the condition holds otherwise the process
behaves according to alternativeB. ThusExecRulesbegins with the execution of an
operation on a channelj,X associated to the respective “active database” condition and
if this evaluates to true (expressed through the statement6< x 6= ∅ 6> it executes the
corresponding action (represented by another processOpExeand listens subsequently
to further event occurrences. Otherwise the CSP process continues with a return CSP
event in order to comply with the interface definitionIServerPush to ensure port
computation consistency (cf. consistency rule 1) and behaves subsequently again ac-
cording to the CSP processListen. The CSP process representing the execution of an
action or the evaluation of a condition is defined as follows:

OpExen,x = OpChnln.open→ OpChnln.request!y→ OpChnln.result?x→
OpChnln.close→ EventChnli.result!x

The other core activity of an ECAS, i.e., the modification of a rulebase, implies either
the subscription of a new event definition over a specific event definition port or the
registration of a condition (or an action respectively) along anOpDef port.

ModifyRulebasej = RbAccessj.close2 (RbAccessj.request→
→ (SubscribeEventu RegisterOperationu ModifyRulebase))

whereSubscribeEvent =∃ i ∈ 1 . . . nEvSrc• EventSrci.open→ EventSrci.request
→ EventSrci.result?x→ EventSrci.close→ RbAccessj.result!x→ ModifyRulebasej

whereRegisterOperation =∃ i ∈ 1 . . . nOpDef•OpDefsi.open→ OpDefsi.request
→ OpDefsi.result?x→ OpDefsi.close→ RbAccessj.result!x→ ModifyRulebase
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In order to analyze the interaction between an ECAS and the DBMS it is necessary
to describe the assumed behavior of a DBMS in WRIGHT. Nowadays commercially
available DBMSs typically apply the so-calledpublish and subscribe techniqueto no-
tify external clients about database events. That means such DBMSs allow an external
system to subscribe to event occurrences whereby these clients can also specify a range
of events to be supervised (e.g., for entities in a specific segment, table or even specific
objects). Henceforth these clients are notified upon the occurrence of these events until
they unsubscribe. Event notification is transmittedasynchronously, i.e., the respective
database operations continue upon event signalisation without giving the observers a
chance to block the triggering transaction. This behaviour is described with the fol-
lowing WRIGHT interface definition:

Interface Type IAsynchNotifier =open→ Notify 2 §
whereNotify = raise!event→ Notifyu close→ §

The CSP process described by theIAsynchNotifier interface differs from the
event channels of an ECAS obeying theIServerPush protocol. Both interfaces do
not initiate the process but expect to be opened from external entities. Hence these two
processes would not agree who initiates the interaction which in turn leads to a CSP
deadlock5. Furthermore they have a different alphabet (besides the eventsopen and
close ). Thus we have to define a connector between anIAsynchNotifier and an
IServerPush that ensures the absence of a local deadlock (consistency rules 2 and
three) and ensures that there is exactly one initiator of the communication (consistency
rule 4).

This is feasible regarding that an ECAS accesses event sources to subscribe for
the detection of specific event occurrences by means of theEventDef ports. Thus
we can define a connector that multiplexes anEventChnl andEventDef port to
interact with anIAsynchNotifier .

ConnectorAsynchNotifier =
RoleNotifier = IAsynchNotifier
RoleEventDef = IClientPull
RoleEventChnl = IServerPush
Glue = EventDef.open→ EventChnl.open

→ Notifier.open→ Operate2 §
whereOperate =Notifier.raise?event→ EventChnl.request!event→ Operate

2 EventChnl.reply?event→ Operate
2 EventDef.close→ Notifier.close→ EventChnl.close→ §

At the architecture level the interest is only on the basic communication between
the DBMS and the ECAS when event signalling and rule execution takes place. It

5Note that in WRIGHT, deadlock is used simply to indicate some kind of problem in the specification
and cannot be taken to mean that the system will actually halt.
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is therefore sufficient to assume a DBMS as a WRIGHT component with a number
of identical ports that provide database sessions for external clients as well as ports
to signal notifications about database events. The following component stands for a
typical passive DBMS providing asynchronous event notification:

ComponentVanillaDBMS(nClients: 1 . . . ; nListeners: 1 . . . )
Port DBClient1...nClients= IServerPush
Port Listener1...nListeners= IAsynchNotifier
Computation = ∀ i ∈ 1 . . . nClients‖DBClienti.open→ Operatei u §

∀ j ∈ 1 . . . nListeners‖Listenerj.open→ Notifyj u §
whereOperatei = DBClienti.request→ DBClienti.result!x
→ Operate2 DBClienti.close→ §

whereNotify j = Listenerj.signal!event→ Notifyj 2 Listenerj.close→ §

In order to describe a system architecture, the components and connectors of a
WRIGHT description are combined into aconfiguration. Figure 6.5 describes the
architecture of a system where a monolithic ECAS interoperates with a passive DBMS:
A configuration starts with the definition of the interfaces, components and connectors
(for the sake of clarity the complete description is not repeated here) which can be
considered as type definitions. In the subsequent compartment theinstancesof these
definitions are declared. Thereby the parameters are bound to specific values. Finally,
the configuration is completed by describing theattachments. They define the topology
of the configuration by specifying which components participate in which interactions.
This is done by associating a component’s port with a connector’s role. In the above
example a simple configuration is assumed where the ECAS interacts exclusively with
the DBMS and one rule client. The DBMS interoperates with only one additional
DBMS client. There are components defined that stand for the DBMS and the rulebase
client, because these components are outside of the system under consideration. The
client role of the connectordbSession andrbCS sufficiently describe the behaviour
of these components. This configuration obviously is a somewhat simplistic view on
an effective situation. However, we experienced it as an appropriate abstraction for a
human designer to grasp the interactions among an ECAS and its environment at an
architectural level.

In contrast to the above specified passive DBMS, a hypothetical DBMS that coop-
erates with an external rule processing facility hands the control to this service until
all rules are processed. This behaviour is sketched by means of the following “semi
passive” DBMS component:

ComponentSemiPassiveDBMS(nClients: 1 . . . )
Port Client1...nClients= IServerPush
Port RuleSystem = IClientPull
Computation = RuleSystem.open→ Operate
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Configuration SimpleConfig
ComponentVanillaDBMS(nClients: 1 . . . ; nListeners: 1 . . . )
ComponentECAS(nEvSrc: 1 . . . ; nEvCh: 1 . . . ;

nOpDef: 1. . . ; nOpChnl: 1. . . ; nRbClients: 1. . . ; C: Computation)
Computation MonolythicECAS(nEvSrc: 1 . . . ; nEvCh: 1 . . . ;

nOpDef: 1. . . ; nOpChnl: 1. . . ; nRbClients: 1. . . ;)
ConnectorClientServer
ConnectorAsynchNotifier

Instances
ecas: ECAS(1;1;1;1;1;MonolythicECAS(1;1;1;1;1))
dbms: VanillaDBMS(3,1)
dbSession,cs1,cs2,rbCS: ClientServer
dbEvents: AsynchNotifier

Attachements
dbms.DBClient1 asdbSession.Server
ecas.OpDefs1 ascs1.Client
dbms.DBClient2 ascs1.Server
ecas.OpChnl1 ascs2.Client
dbms.DBClient3 ascs2.Server
dbms.Listener1 asdbEvents.Notifier
ecas.EventDef1 asdbEvents.EventDef
ecas.EventChnl1 asdbEvents.EventChnl
ecas.RbAccess1 asrbCS.Server

End SimpleConfig

Figure 6.5: Configuration of a monolithic ECAS and a passive DBMS
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whereOperate =∀ i ∈ 1 . . . nClients‖DBClienti.open→ DBSessioni
whereDBSessioni = DBClienti.request→

(DBClienti.result!x u RuleSystem.request!eventi →
RuleSystem.result?eventi → DBClienti.result!x)
2 DBClienti.request.close

Note that this “semi passive” DBMS initiates the communication between the DBMS
and the rule system because the DBMS relies on the latter’s availability to ensure
correct behaviour. Thus the connector regulating the interaction between the DBMS
and the ECAS must not multiplex theEventDef and theEventChnl in order to
avoid a deadlock. In fact, a simple client-server connection between theRuleSystem
port of the DBMS and anEventChnl port of an ECAS is absolutely sufficient.

The WRIGHT definitions established so far describe the high-level design of an
ECAS by defining the fundamental computation patterns as well as the basic inter-
action protocols between an ECAS and its environment in a concise way. Thus the
abstractions and intuitions of the informal model established in Section 6.1.2 have
been made explicit and the subsystem design can begin.

6.2.2 The Gross Structure of an ECAS

This section describes the first decomposition step. First we describe how an architec-
ture style is applied to settle the basic structure of the reference architecture. Subse-
quently we illustrate how the decomposition of an ECAS is expressed in WRIGHT.

ECA Systems as Virtual Machines

The design of the reference architecture of ECASs is based on the so-calledvirtual
machine architecture style[BCK98, GS94], an architecture pattern which is defined as
follows:

Problem: Virtual machines are software systems that simulate some functionality that
is not native to hardware and/or software on which it is implemented. Hence
this style is adequate for applications in which the most appropriate language or
machine for executing the solution is not directly available.

Context: Virtual machines are most often designed to bridge the gap between a de-
sired machine or language and some machine or language already supported by
the environment.

Solution:

• System Model:Interpretation of a given program according to specific in-
put. The virtual machine style is synonymously addressed astable driven
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interpreter architecture style (or pattern respectively). We do not apply
the latter term in order to avoid a confusion with the differently structured
interpreter design pattern introduced in [GHJV95].

• Components:

– The execution engine that interprets and executes the program state-
ments.

– The representation of the virtual machine’s control state (e.g., values
of registers or the current statement to be executed).

– A compartment that contains the program to be carried out by the ex-
ecution engine.

– A representation of the current state of the program to be interpreted
(e.g., the values of variables assigned during program execution).

• Connectors:Data access and procedure calls.

• Control Structure: Usually state-transition graphs for execution engine;
input-driven for selection of what to interpret.

Diagram: According to Figure 6.6

Program State

Interpreter State

Input

Output

Selected Instruction

Updates Data Program Instructions

State Data

Program Being

Execution
Engine

Interpreted

Figure 6.6: Principal Schema of Virtual Machines

Examples: Interpreters such as the Java virtual machine, syntactic shells and expert
systems systems that perform by executing of production rules.

Significant Variants: Since expert systems require complex rule selection procedures
various specialized forms have evolved for this application domain.

The elements of the reference model of (unbundled) ADBMSs elaborated in Sec-
tion 6.1 are mapped as follows to the virtual machine architecture style: Therulebase
contains the counterpart of the program to be interpreted, whereby the rules act as pro-
gram statements. Therule execution enginecorresponds to the interpretation engine
depicted in Figure 6.6. Hence, thescheduleris conceived as an interpreter state com-
ponent selecting the next rule to be executed. Event occurrences and transaction states
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(i.e., which transactions have been started and whether and in which way they have ter-
minated) as well as eventual rule assertion points form the counterpart of state data in
Figure 6.6. The input of this virtual machine is formed by the event signals (including
rule assertion points), whereas the DBMS commands (queries and DML statements)
signal that a transaction may resume when all event occurrences are processed. Invo-
cations of external programs (including database manipulations) are the output of the
virtual machine.

The virtual machine style covers many aspects of an ECA System, but it is not com-
pletely sufficient as reference architecture of an ADBMS. A typical virtual machine is
principally outlined to execute a program which is loaded once into the interpreter and
is not modified at runtime. Instead the rulebase of an ADBMS is intended to be mod-
ified over the lifetime of an active database. As a consequence the rulebase delivers
rule definitions to the scheduler in order to build the rule instantiations. Furthermore,
the rulebase invokes the event service in order to subscribe respectively unsubscribe
to event definitions and the rule execution component to compile action and condi-
tion definitions which are executed subsequently in the passive DBMS or in external
clients. Finally an event service not only receives event signals as input but it also
sends output to external event sources in order to subscribe for specific events.

Thus the reference architecture of an ECAS represents a modified virtual machine
as shown in Figure 6.7. Subsequently the components depicted in Figure 6.7 are re-

Rule Execution
Engine

Actions
Selected Conditions /

Event Service
Subscribe

Signal
Event Subscription

Rulebase

Scheduler
Execute

Compile

"Event Processed" Instances
Compilation

Rules
Occurrences

Figure 6.7: ECA System as Virtual Machine

ferred to asmajor components.

Hierarchical Decompositions in WRIGHT

Components and connectors that are composed of architectural subsystems are defined
in WRIGHT ashierarchical descriptions. Thus the computation of a component or
the glue of a connector is represented as a configuration. In addition, however, for
a component the nested description has an associated set of bindings, which define
how the unattached port names from internal components are associated with the port
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names of the embracing component (correspondingly for connectors: role names on
the inside are identified with the role names on the outside).

In order to specify the decomposition of an ECAS into subcomponents, we define
a computation as exemplified in the following fragment.

Computation ecasAsVM(nEvSrc: 1 . . . ; nEvCh: 1 . . . ; nRuleCh: 1 . . . ;
nRbClients: 1. . . ;) =
Configuration VirtualMachine

. . .
ComponentSimpleEventService(nEvSrc: 1 . . . ; nEvCh: 1 . . . ;

C: Computation)
Port EvDef1...nEvSrc= IClientPull
Port EvIn1...nEvCh= IServerPush
Port EventSubscr = IServerPush
Port . . .
Computation = C

ComponentSimpleRulebase . . .
ConnectorClientServer . . .

. . .
Instances

E: SimpleEventService(. . . )
CS1: ClientServer
R: SimpleRulebase
. . .

Attachements
E.EventSubscrasCS1.Server
. . .

End VirtualMachine
Bindings

E.EvDef1...nEvSrcasEvDef1...nEvSrc

E.EvChnl1...nEvChnasEvChnl1...nEvChn

. . .
End Bindings

End VirtualMachine
End ecasAsVM

The bindingsEvDef andEvChnl refer to the ports of the embracing ECAS specifi-
cation of Figure 6.4. It is principally sufficient to replace in the configuration in Figure
6.5 the definition of the computationMonolythicECAS with that ofecasAsVM to
achieve a consistent specification of a decomposed ECAS.
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6.2.3 Subsystem Design

Conceiving an ECAS as virtual machine as shown in Figure 6.7 gives a basic struc-
ture of the architecture and can therefore be used as “system metaphor” of an ECAS
according to the Extreme Programming methodology (cf. Sec. 5.2.1). In this section
the major components are specified architecturally and refined into subcomponents –
as far asstrategic decisions6 are concerned. Tactical decisions are made in Chapter 7
when component provision takes place.

This section is organized as follows: First the role of the rulebase in the refer-
ence architecture is clarified. Subsequently the event service and the scheduler are
decomposed into their major subcomponents. Finally, the organization rule execution
component is established.

The Rulebase

As seen in Section 6.2.2 a rulebase serves as a central storage that collaborates with
all major components of an ECAS. Such a behaviour is typically designed according
to the so-calledrepository architecture style:

Problem: Applications in which the central issue is establishing, augmenting and
maintaining a complex central body of information. Typically the information
must be manipulated in a wide variety of ways.

Context: Repositories often require considerable support, either from an augmented
runtime system (such as a database) or a generator to process the data definitions.

Solution:

• System Model:centralized data, usually richly structured.

• Components:

– One so-calledblackboardwhich is a central data structure representing
the current state of the system.

– Many purely computational processes that operate on the blackboard.

• Connectors:Computational units interact with the memory by direct data
access or procedure calls.

• Control Structure: Varies with type of repository; may be external (de-
pends on input data stream for databases), or predetermined (as for compil-
ers) or internal (depends on state of computation as for active repositories.

Diagram: According to Figure 6.8

6In [Boo94]strategic decisionsare defined as those which have sweeping architectural implications,
whereastactical decisionshave only local architectural implications.
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Figure 6.8: Principal Schema of the Repository Architectural Pattern

Significant Variants: The repository pattern covers large centralized transaction-oriented
databases as well as blackboard systems applied for some AI applications and
systems with predetermined execution patterns in which different phases add
information to a single complex data structure. These variants differ chiefly in
their control structure. Often long-term persistence may also be required. It
is feasible to design the blackboard as an active repository that is connected to
the observing components by implicit invocation. In that case, the blackboard
sends notifications to the subscribing components when data of interest changes,
whereby the notified components can query the blackboard in turn to get more
detailed information.

Thus we can specify the rulebase as follows:

ComponentRulebase(nRbAcc: 1. . . )
Port RbAcc1...nRbAcc+1 = IServerPush
Port EventSubscr = IClientPull
Port CondActLib = IClientPull
Computation =

‖∀ i ∈ nRbAcc+ 1‖RbAcci.open→ Listeni

whereListeni = RbAcci.request?x→ (RbAcci.result!y u
EventSubscr.open→ EventSubscr.request!event→

EventSubscr.result?x→ EventSubscr.close→ RbAcci.result!y
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u CondActLib.open→ CondActLib.request!event→
CondActLib.result?x→ CondActLib.close→ RbAcci.result!y

TheRbAcc ports are attached to their counterparts of the embracing ECAS. There is
an additionalRbAcc port for the scheduler to query the rulebase in order to create the
rule instantiations. Through the portEventSubscr the rulebase invokes the event
service in order to subscribe for event definitions. Correspondingly the rule executor
is invoked via theCondActLib port to create executable conditions and actions.

The Event Service

The event service basically records (primitive) event signals as event instances, de-
tects eventually occurring composite events and maintains a (persistent) event history.
These tasks are performed in a well-defined order whereas complex event detection
is not a mandatory element of an event service, as there can be rule models without
complex events. Thus thepipes and filters architecture styleis adequate to design the
architecture of the event service.

Problem: The pipes and filters style is suitable for applications that require a series
of independent computations to be performed on ordered data. It is particularly
useful if each of the computations can be performed incrementally on a data
stream. In such cases the computations can principally proceed in parallel.

Context: The style relies on being able to decompose the problem into a set of com-
putations (filters) that transform one or more input streamsincrementallyto one
or more output streams. Filters must be independent entities and must not share
state with other filters to perform the computation. Hence, filters are not required
to know the identity of their upstream and downstream filters.

Solution:

• System Model:data flow between components, with components that in-
crementally map data streams to data streams.

• Components:filters which are purely computational, local processing and
asynchronous.

• Connectors:data streams.

• Control Structure:data flow.

Diagram: According to Figure 6.9

Significant Variants: It is feasible to extend the pipes and filters style by restricting
what appears on the input pipes of a filter or to make guarantees about what
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Figure 6.9: Pipes and Filters

appears on its output pipes (i.e,typed pipes) still without identifying the compo-
nents at the end of those pipes. Furthermore it is not uncommon that the filters
obtain control information from components that do not reside in the pipeline. If
such modifications are applied one speaks about a so-calledmodifiedpipes and
filters style [GS94] which is in fact the typical application of this style.

Writing to a pipe is defined in WRIGHT as follows:

Interface Type IWritePipe =(open→WriteOutput) u §
whereWriteOutput =(write!x→WriteOutput) u (close→ §)

Correspondingly reading to a pipe is defined by theDataInput interface

Interface Type IReadPipe =(open→ ReadInput) u §
whereReadInput =(read→ (data?x→ ReadInput) 2 eof→ close→ §))

u (close→ §)

The connector linking two filters – a so calledpipe– must deliver the data received on
the reading end in the same order on the writing end of the pipe. Furthermore it must
ensure that no data is lost when one of the two filters disconnects from the pipe. The
following WRIGHT specification complies to these requirements:

ConnectorPipe =
RoleSource = IWritePipe
RoleSink = IReadPipe
Glue = Open〈〉 where

Opens =



Source.write?x→ Open〈x〉
2 Source.close→ Closed〈〉
2 Sink.close→ Capped when s = 〈〉

Sink.read→ Sink.data!x→ Opens′
2 Source.write?y→ Open

〈y〉as′a〈x〉
2 Source.close→ Closed

s′a〈x〉
2 Sink.close→ Capped when s = s′ a 〈x〉
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Closeds =


Sink.read→ Sink.data!x→ Closeds′

2 Sink.close→ § when s = s′ a 〈x〉
Sink.read→ Sink.end− of − data→ Sink.close→ §
2 Sink.close→ § when s = 〈〉

Capped= Source.write?x→ Capped
2 Source.close→ §

An event service must provide on the one hand ports that are bound toEventDef
andEventChn ports of the embracing ECAS as well as a port that enables the rule-
base to invoke event subscription. Hence these ports are identical to their counterparts
in the ECAS and the rulebase respectively. On the other hand there are several novel
ECAS-internal communications for which adequate ports must be specified (cf. Fig.
6.7):

• The event service forwards event occurrences to the scheduler via the portEvOcc.
Since the event service principally receives the event signals in an external for-
mat and transforms them into event occurrences which are suited for subsequent
rule processing, the event service and the scheduler are conceived as filters in a
pipeline.

• The rulebase invokes event subscription through the portsEvSubscr . For each
event type in the rule model of the ECAS one such port is defined.

• ThroughEvState event instances are retrieved by other components.

• The event service is informed byEvProc that all rules for a specific event have
been processed.

Thus the interface of the event service is defined as follows:

ComponentEventService(nEvTypes: 1 . . . ; nEvSrc: 1 . . . ; nEvCh: 1 . . . : C: Computation)
Port EvDef1...nEvSrc= IClientPull
Port EvIn1...nEvSCh= IServerPush
Port EvOcc = IWritePipe
Port EvSubscr1 . . . nEvTypes= IServerPush
Port EvState = IServerPush
Port EvProc = IServerPush
Computation = C

The event service is decomposed into a pipeline as shown in Figure 6.10. The pipeline
starts with anevent signal processor, that multiplexes primitive event occurrences
from various event sources and forwards them to the next filter. The interface of the
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Figure 6.10: The Reference Architecture of the Event Service

WRIGHT specification of the event signal processor component corresponds to a large
extent to the interface specification of the event service. There are the identical ports
EvDef , EvIn , EvSubscr andEvProc which are bound to their counterparts of the
event service component. The portEvOcc is the writing end of the filter, however it is
not bound to the respective port of the event service but is connected via a pipe to the
next subcomponent of the event service .

The complete WRIGHT specification of the event signal processor is as follows:

ComponentEventSignalProc(nEvTypes: 1 . . . ; nEvSrc: 1 . . . ; nEvCh: 1 . . . :
C: Computation)
Port EvDef1...nEvSrc= IClientPull
Port EvIn1...nEvCh= IServerPush
Port EvOcc = IWritePipe
Port EvSubscr1 . . . nEvTypes= IServerPush
Port EvProc = IServerPush
Computation = EvProc.open→ ∀ i ∈ nEvSrcEvDefi.open→

EvOcc.open→ Operate2 §
whereOperate =

‖∀ i ∈ nEvSrc‖EventChnli.open→ Listeni

whereListeni = EvIni.request?event→ EvOcc.write!event→ Listeni

2 EvIni.close→ §
‖EvProc.close→ ∀ i ∈ nEvSrcEvDefi.close

‖∀ i ∈ nEvTypesEvSubscri.open→ Subscribei
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whereSubscribei = EvSubscri.request?eventDef→
∃ j ∈ 1 . . . nEvSrc• EvDefj.request!eventDef→ EvDefj.reply?x→
EvSubscri.reply!x

2 EvSubscri.close→ §

Note that the event signal processor incorporates the various DBMS- and operating
system-specific event detection adapters. Since the specification of these adapters is
not a strategic issue we omit their specification in the reference architecture but con-
sider them at the component provision level (cf. Chap. 7).

The complex event detector and the event history can be conceived at the architec-
ture level as simple modified filters which are specified in WRIGHT as follows:

ComponentModifiedFilter
Port Inp = IReadPipe
Port Outp = IWritePipe
Port Ctrl = IPushServer
Computation = CtrlInfo.open→ Inp.open→ Outp.open→ Operate

whereOperate =Inp.read→
(Inp.data?x→ Outp.write!x→ Operate2 eof→

Outp.close→ Capped)
2 Ctrl.close→→ Inp.closeOutp.close→ §

whereCapped =Ctrl.request?x→ Ctrl.reply!y 2 Ctrl.close→ §

The following computation stands for an event service that provides composite
event detection.

Computation EventServiceComp(nEvSrc: 1 . . . ; nEvCh: 1 . . . ; nRuleCh: 1 . . . ;
nRbClients: 1. . . ;) =
Configuration ComplexEvents

. . .
ComponentEventSignalProc(nEvTypes: 1 . . . ; nEvSrc: 1 . . . ; nEvCh: 1 . . . :
C: Computation)
ComponentModifiedFilter . . .
ConnectorPipe . . .
ConnectorClientServer . . .

. . .
Instances

SignalProc: EventSignalProc(. . . )
ComplexEvDet, EvHistory: ModifiedFilter
pipe1, pipe2: Pipe
. . .

Attachements
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SignalProc.EvOccaspipe1.Source
ComplexEvDet.Inpaspipe1.Sink
ComplexEvDet.Outpaspipe2.Source
EvHistory.Inpaspipe2.Sink
. . .

End Attachements
Bindings

SignalProc.EvDef1...nEvSrc−1 asEvSubscr1...nEvSrc−1

SignalProc.EvChnl1...nEvChnasEvChnl1...nEvChn

SignalProc.asEvProc
ComplexEvDet.CtrlasEvSubscr1...nEvSrc

EvHistory.CtrlasEvState
EvHistory.OutpasEvOcc

End Bindings
End ComplexEvents

End EventServiceComp

The loose coupling of the components in pipes and filter architecture style enable
an elegant design for event services that provide complex event detection as an op-
tional feature. In the most primitive form of an event service, the next filter is the
event history where the event instances are registered. The event history subsequently
forwards the registered event instances to the scheduler. Should the rule model of an
ECAS incorporate complex event detection, it is feasible to simply put a complex event
detector between the event signal processor and the event history.

The Scheduler

The scheduler manages the rule execution state which is defined by the set of currently
triggered rule instantiations. It receives the event occurrences, determines the rules
to be executed on account of these event occurrences and invokes query evaluation
and action execution in accordance with the conflict resolution and cycle policy. The
interface of a scheduler consists of three port categories: one port to read event oc-
currences, another to query the rulebase in order to create the rule instantiations and
several identical ports to enable concurrent condition evaluation and action execution.
From this arises the following interface definition of a scheduler:

ComponentScheduler(nRuleChnl: 1. . . ; C: Computation)
Port EvSignal = IReadPipe
Port Rulebase = IClientPull
Port RuleChnl1...nRuleChnl= IClientPull
Computation = C

The rule execution cycle manager is divided into two subcomponents that are related
in the modified pipe and filter architecture as shown in Figure 6.11.
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Figure 6.11: The Reference Architecture of the Rule Execution Cycle Manager

1. A dispatcherthat receives the signalled events and generates so-calledrule in-
stantiationsfor each rule triggered by the respective event occurrence. The rule
instantiations record status information of a triggered rule such as the event pa-
rameters, whether the condition has already been evaluated etc. They are subse-
quently forwarded to the outgoing pipe.

2. Theworking memorymanages all rule instances that are currently executed and
invokes condition evaluation and action execution respectively. The order of rule
processing is determined according to rule priorities and the respective conflict
resolution strategy. New rule instances are integrated into the working memory
according to the respective cycle policy. Rule instances that are associated to
a triggering transactions are not only kept in the working memory until their
actions have been executed but until the triggering transaction ends. Thus it is
feasible to performcompensating actions7 upon an eventual abort of the trigger-
ing transaction.

The dispatcher is a modified filter whereby to control information is queried from
the rulebase upon arrival of an event occurrence. As a consequence the specification
corresponds largely to the one given above with the exception that theCtrl port is of
the interface typeIClientPull . For the sake of shortness the WRIGHT specifica-
tion of the dispatcher is skipped.

The working memory is the final element of the pipeline starting with the event
signal processor. It invokes the rule execution engine in a “call and return” manner,

7Action definitions may include a compensating action
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e.g., the engine evaluates a condition and returns its result. The WRIGHT specification
of the working memory is as follows:

ComponentWorkingMem(nRuleChnl: 1. . . )
Port Inp = IReadPipe
Port Ctrl = IServerPush
Port RuleChnl1...nRuleChnl= IClientPull
Computation = Ctrl.open→ Inp.open→ ∀ i ∈ nRuleChnl• RuleChn.open→

Operate2 §
whereOperate =‖ReadInp‖ExecRulej ‖Ctrl.close→ Close

whereReadInp =Inp.read→ Inp.data?x→ ReadInp
whereExecRulej = ∀ j ∈ nRuleChnl• RuleChnl.request!x→

RuleChnl.reply?y→ ExecRulej
whereClose =Inp.close→ ∀ j ∈ nRuleChnl• RuleChnl.close→ §

Note the working memory is partitioned into so-calledrule execution threadsto enable
concurrent rule execution along theRuleChnl ports.

The Rule Execution Engine

The rule execution engine acts at rule execution time as a server to evaluate conditions
and execute actions whereby it invokes (ECAS-) external facilities to perform specific
operations (e.g., in order to query the database). Thus it has an equal number of rule
channel ports like the scheduler, an identical number of rule operation channels like the
embracing ECAS and connections to signal that all rule instances for a specific event
occurrence have been processed. Furthermore the rule execution component needs
access to the event service in order to query past event occurrences.

At rule definition time the rule execution engine translates conditions and actions
into an executable form. These operations are invoked via a specificrule translation
port. In order to translate rule commands, the rule execution component relies on ex-
ternal services to compile proprietary operations (e.g., an action that is defined as a
vendor specific stored procedure). These external facilities are invoked via the oper-
ation definition channels that are bound to their counterparts of the ECAS. Thus the
WRIGHT specification has the following interface:

ComponentRuleExecutor(nRuleChnl: 1. . . ; nOpDef: 1. . . ; nOpChnl: 1. . . )
Port Translate = IServerPush
Port RuleChnl1...nRuleChnl= IServerPush
Port EvState = IClientPull
Port EvProc = IClientPull
Port OpDefs1...nOpDef = IClientPull
Port OpChnl1...nOpChnl= IClientPull
Computation = . . .
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The rule execution engine is basically conceived as a component that coordinates these
operations by providing “glue” and “veneer”. The glue ties the adapters through which
an ECAS outputs commands together, whereas the veneer papers over them by provid-
ing a consistent interface to all adapters, so that the scheduler does not have to deal with
them individually. The layered architecture style addressed in Section 4.2.2 is adequate
to design the rule execution engine as depicted in Figure 6.12. On top is theExecu-
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Figure 6.12: The Reference Architecture of the Rule Execution Engine

tion Layerthat provides the veneer by means of the Rule Execution API. It interprets
the rule execution commands which are written in a specific condition/action language
(cf Chap. 8) and identifies the tasks that must be performed externally. The condi-
tion/action language may vary from various ECAS (e.g., Java for one ECAS, PL/SQL
[Ora92] for another, providing an application specific language is also conceivable)
thus the condition/action interpreter is devised as an exchangeable component.

Right below the execution layer is theAccess Layer(represented by the connec-
tion manager component) providing glue services such as routing of the command to
the adequate connector, connection management to the DBMS and external processes.
Furthermore the connection manager simulates specific database behavior like the es-
tablishment of a temporary database session to perform detached rule execution if a
DBMS offers sibling transactions.

Finally, the Portability Layer encapsulates the idiosyncrasies of the respective
DBMS or OS by means of various system specific adaptors.

6.3 Conclusion

In this chapter a reference model of ADBMSs has been established and transformed
systematically into a reference architecture of the ECA Systems. This reference archi-
tecture is beforehand a necessity to furnish FRAMBOISE with an initial set of reusable
software components which is discussed in the next chapter. However, the reference
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architecture is also helpful for ADBI novices to learn how ECASs are built and sup-
ports experienced ADBIs to compare ECASs in order to interchange components from
different systems. Thus the reference architecture of the ECASs is the pivotal element
between the unbundling of ADBMSs and the subsequent rebundling of ECASs.
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Chapter 7

Component Provision

This chapter elaborates the procedure according to which software components are de-
veloped in FRAMBOISE. It is known that no proper methodology to develop reusable
software components has been found so far [Szy97]. For instance theCatalysismethod
[DW99] is devised to provide software components, but this approach does not indi-
cate an exact development procedure. Instead it integrates different techniques into a
coherent kit which must be tailored and enhanced for the respective application do-
main.

Thus the conception of such a method is an indispensable prerequisite to furnish
a component-based construction system like FRAMBOISE. The chapter is organized
as follows: Section 7.1 introduces the principles of component development, followed
by a presentation of the approach conceived for FRAMBOISE (Sec. 7.2). In Section
7.3 a comprehensive example in order to illustrate the procedure is provided. Finally,
Section 7.4 concludes the chapter by giving an overview of the so-calledFRAMBOISE
Development Framework.

7.1 Foundations

In this section the basic problems to implement software components are discussed
in paragraph 7.1.1. Object-oriented programming techniques and in particular class
frameworks are considered as the most promising approach to implement software
components. Thus Section 7.1.2 introduces the basic characteristics of object-oriented
class frameworks. Since class frameworks and component software appear at the first
glance to be similar ideas, these concepts are compared in Section 7.1.3. Finally, the
techniques to develop class frameworks are discussed in Section 7.1.4.

7.1.1 Component-Oriented Programming

The termcomponent-oriented programming(COP) has been coined in [SP96] and
addresses the fundamental aspects of programming components. COP is defined in
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the style of typical OOP definitions by requiring the support of

• polymorphism (substitutability),

• modular encapsulation (higher level information hiding),

• late binding and loading (independent deployability),

• safety (type and module safety).

Despite of the obvious resemblance of this definition with the requirements of object-
oriented and modular programming, fulfill the latter techniques only a subset of the
necessities of COP. The main problem is that basically all existing design methods
work only within a component but do not cover adequately the difficulties resulting
from the complex interactions and dependencies between components.

Probably the most notorious problems to be coped with are theasynchronitybe-
tween components,multithreadingandimplementation inheritance across component
boundarieswhen object-oriented programming techniques are used [Szy97]. In greater
detail they pose the following difficulties:

Asynchronity Event propagation is used by all current component infrastructures as a
flexible form of component instance assembly. In principle, these facilities cor-
respond to the implicit invocation architecture style sketched in Section 6.2 and
introduce the corresponding problems, in particular when events are multicasted
to several recipients. Hence the system is in an inconsistent state while multicast
is in progress which might, for instance, lead to false results when a component
instance queries another one by regular method invocations. Furthermore event
recipients might post themselves events which must be synchronized with the
pending multicasts in order to preserve correct system behaviour. Finally the set
of event recipients could change while a multicast is in progress or some of the
recipients might raise exceptions.

Multithreading There is a substantial increase in complexity over sequential pro-
gramming when multiple sequential activities are performed concurrently over
the same state space. It is exceptionally difficult to debug code that uses mul-
tiple threads and complex interlocking patterns. In principle one has to solve
the same concurrency problems as in the domain of DBMSs (e.g., avoiding dirty
reads, lost updates etc.). However, few general-purpose programming methods
support transactions and even fewer programming languages do so that most of
these mechanisms need to be programmed from scratch. Multithreading basi-
cally enables a better distribution of performance as observed by clients issuing
concurrent requests. However, synchronizing concurrent threads can lead to a
substantial degradation of performance. Thus theoverall performance is typi-
cally maximized by not using threads at all and by always serving the request
with the shortest expected execution time first.
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Implementation Inheritance Component oriented programming basically can be per-
formed with any programming language even though the object-oriented paradigm
is considered as the most promising approach [Szy97]. However, the applica-
tion of inheritance1 leads to the so-calledFragile Base Class Problem(FCB)
which means that a compiled class should remain stable in the presence of spe-
cific transformations of the inherited elements. The FCB problem, which is in
its essence a purely object-oriented problem, is severed when implementation
inheritance is applied across component boundaries. In principle it is recom-
mended to restrict implementation inheritance to situations which are easy to
grasp, i.e., to moderate numbers of classes which are all under local control
and are whiteboxes. In more complex situations implementation inheritance is
preferably substituted byobject composition2 respectivelydelegationwhich is a
much simpler form of composition than implementation inheritance.

So far no method has been invented to implement components that takes all the
above issues properly into account [Szy97]. Hence, one is basically obliged to rely on
existing programming technologies implying special efforts to cope with dependencies
that cross component boundaries.

7.1.2 Characteristics of Class Frameworks

Assuming object-oriented programming as the best-suited technology to implement
components, one has to cope with the fragile baseclass problem discussed in the previ-
ous section. We have seen that object composition limits the fragile baseclass problem
and makes software principally more flexible by enabling a configuration at runtime
of the target system. However, object composition comes not for free but it is harder
to understand than more static solutions. Delegation (and in a broader sense object
composition) are considered to work best when used in highly stylized ways, i.e., in
standard patterns [GHJV95].

Object-oriented software systems that pervasively use standard design patterns are
usually designed as so-calledclass frameworks3 which are nowadays a widely recog-
nized technology to promote reuse in object-oriented environments [Joh97].

A class framework (CF) is defined as

1There are two forms of inheritance. On the one hand there is the so-calledinterface inheritance
(also addressed assubtyping) when contracts or interfaces are inherited. On the other handimplemen-
tation inheritance, which is also referred to ascode inheritanceor subclassing, implies the inheritance
of implementation fragments or code.

2An object performs its tasks by sending messages to other objects which are considered as parts of
the first object.

3Class frameworks are also addressed as(Object-Oriented) Application Frameworks, because they
are typically applied to build entire applications. Since we apply this technique in FRAMBOISE pri-
marily to provide components, we prefer here the expression class framework or synonymouslyobject-
oriented framework(OOF).
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. . . a set of cooperating classes that makes a reusable design for a spe-
cific class of software. A framework provides architectural guidances by
partitioning the design into abstract classes and defining the responsibili-
ties and collaborations. A developer customizes the framework to a partic-
ular application by subclassing and composing instances of the framework
classes [GHJV95].

Class frameworks are actually specialized class libraries that embody a generic design
[CP95]. Developing an application by means of a framework consists of providing the
code that implements the specifics of the particular application which is not already
addressed in the general solution of the framework itself. This code, called anensemble
[Tal95], is typically represented as specializations of abstract classes provided by the
framework. The ensemble is subsequently put together with the framework in order to
provide the final solution. The parts in the framework that are open to extension and
customization are termedflexible hot spots[Pre94].

A prominent characteristic of class frameworks is the so-calledinversion of con-
trol which is depicted using the UML notation [BRJ98b] in Figure 7.1. In traditional
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Figure 7.1: The Principal Structure of a Class Framework

programs the developer writes the main program that includes the flow of control ac-
cording to which the methods of the classes that belong to the library are called. The
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main program of class frameworks is, however, a part of the framework and the devel-
oper provides new classes that are “plugged” into it. Those classes are subsequently
invoked by the code of the framework. This inversion of control is also known as
Hollywood Principle(i.e., “don’t call us, we call you”).

Methods in a class are categorized into so-calledhookandtemplatemethods [Pre94].
Hook methods are placeholders (e.g. an empty or an abstract method) that are overwrit-
ten in derived classes to be invoked by more complex methods that are implemented
in the framework. These complex methods are usually termed as template methods
[GHJV95]. Note that templates must not be confused with the C++ template construct
which has a completely different meaning.

Class frameworks are categorized incallingandcalledframeworks [SBF96], where
a calling framework is an active entity, proactively invoking other parts of the applica-
tion whereas a called framework is a passive entity that can be invoked by other parts
of the application. Note that the Hollywood Principle applies also for called frame-
works, because the called framework is invoked in its entirety by the application and
calls subsequently the application defined classes according to the Hollywood princi-
ple. Class frameworks are implemented software, however, they are not executable
programs because they do not necessarily provide default behaviour. On account of
the inversion of control, however, they are neither class libraries that are simply added
to the system under construction.

7.1.3 Class Frameworks vs. Component Software

Despite of the similar names, almost identical visions and superficially similar con-
struction principles, class frameworks differ from component frameworks [Szy97].
Component frameworks enforce, among other things, the architecture of a compos-
ite system whereas class frameworks merely structure individual components without
regard of their placement in the component framework. In fact objects and class frame-
works are foundwithin components wherein, depending on the component’s complex-
ity, they can form their own layering and hierarchies. In contrast to the architecture of
a component framework, the structure of a class framework disappears when a com-
ponent is compiled. Thus a class framework is actually immaterial at runtime whereas
the class instances are inexistent at compiletime.

Nevertheless, frameworks and components are considered as different but cooper-
ating ideas [Joh97]. Besides giving the opportunity to build new components out of
composite objects, class frameworks provide also the specifications for new compo-
nents and a template for their implementation. Hence class frameworks are regarded
as being similar to other techniques for reusing high-level design (e.g., templates
[Spe88, VK89] or schemas [LH89, KRT89]) and application generators [Cle88].

“Frameworks are firmly in the middle of reuse techniques. They are
more abstract and flexible (and harder to learn) than components, but more
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concrete and easier to reuse than a raw design (but less flexible and less
likely to be applicable) [Joh97].”

Hence class frameworks are an implementation technology that makes it easier to de-
velop new components.

7.1.4 Framework Development Methods

Like reusable software components, class frameworks are notorious for being difficult
to develop:

“If applications are hard to design and toolkits are harder, then frameworks
are the hardest of all. A framework designer gambles that one architecture
will work for all applications in the domain. . . ” [GHJV95]

Not surprisingly no fully accepted method to design class frameworks has emerged so
far, but proposals to furnish application frameworks typically consist of general (but
nevertheless useful) rules (e.g., [Tal95]). Most excellent object-oriented frameworks
are still the product of a more or less chaotic development process, typically carried
out in the realm of research like settings.

It is nowadays widely accepted that framework development should not start by
trying to embrace the variability and flexibility up front. An approach to introduce
flexibility stepwise into a framework is proposed in [Pre97] whereas [Sch97] suggests
a method to generalize class frameworks systematically.

Even though these methods promote a sound framework development process, is
it not feasible to construct an immutable (industrial-strength) class framework after a
limited number of iterations [CHSV97]. Instead frameworks should be designed such
that they can evolve and be easily evolved and adapted also when they are operational
(i.e., used for actual application development). In order to avoid that architectural
drifts and version proliferation of the framework hamper the maintenance of applica-
tions developed so far, [CHSV97] suggests the application of so-calledreuse contracts
[SLMH96] to promote cooperation between framework and application engineers.

7.2 Component Development in FRAMBOISE

In order to enable an effective component development we need basically three el-
ements: Proper descriptions at various abstraction levels, a systematic procedure to
generalize components (cf. in the component engineering section) and finally a process
to develop the components effectively. Each of these issues is addressed subsequently.

7.2.1 Component Abstractions

Components are considered in the FRAMBOISE component model (cf. Sec. 4.1.5)
chiefly asabstractcomponents which implies the paramount importance of proper
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component abstractions. They must enable a developer to consider components at
various abstraction levels in order to transfer the generic vision of the reference archi-
tecture into implemented software.

Component design is performed in FRAMBOISE at three levels of abstraction:

Architectural level. The highest level of abstraction considers components from the
point of view of the gross structure of the ECASs. Components are regarded as
opaque entities that result from the design of the reference architecture (cf. Chap
6). Special emphasis is given to the principal interaction between components.
Components and their interoperations are described by means of the architecture
definition language WRIGHT which is detailed in Appendix A.

Functional level. The next lower level of abstraction assumes components as black
boxes whereas their interfaces are detailed in a way that they can be mapped eas-
ily to object-oriented programming languages. In order to specify components
at the functional level we apply a specification language proposed in [BBK+97].
This approach below is introduced.

Implementation level. The lowest level of abstraction copes with the actual imple-
mentation of the components. Hence the components are regarded from the
point of view of the chosen programming method (i.e., object-oriented program-
ming in our case). Aspects of the component infrastructure are equally taken into
account. In order to specify components at the implementation level, we adopted
the widely known Unified Modeling Language (UML). Since UML gained such
a widespread popularity, this issue is not detailed in this thesis and the reader is
referred to [BRJ98a].

The interrelationship among these levels of abstraction is illustrated in Figure 7.2.

Reference Architecture

Component Implementation

Component Specification

Architectural Level

Functional Level

Implementation Level

Figure 7.2: The three Levels of Component Design

The functional abstraction level was introduced basically in order to enable a smooth
transition from the component description applied in WRIGHT to a chiefly object-
oriented view adopted in the implementation level. In particular a clear distinction
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between component interfaces and class interfaces is required in order to avoid that
these concepts are blurred (cf. Sec. 4.1.2).

The method chosen to specify components at the functional level stems from an
approach suggested in [BBK+97] where components are chiefly defined by concise
interface definitions. Thereby interfaces are defined by constructs that are strict ex-
tensions of the CORBA IDL interface [Obj97]. Hence interface definitions consist of
features such as operations, attributes, multiple inheritance and name spaces. Further-
more the interface definitions have additional semantic-oriented features ofpre- and
postconditions, invariantsandstates.

Note that this specification language has actually been devised as an architecture
specification language and has therefore been named as Architecture Specification
Language (ASL). We prefer WRIGHT to specify software architectures because of
its focus on the interaction between components. Furthermore WRIGHT obliges a
designer to abstract more effectively from implementation issues whereas the con-
creteness of ASL might distract a developer to “think” in terms of the implementation
already at the architecture level of design.

7.2.2 Systematic Component Generalization

Component generalization is principally the only activity where component engineer-
ing differs from traditional software development (cf. Sec. 5.1.1). There is, however,
no ready to use method to generalize components. Even though the principal general-
ization techniques (narrowing, widening, isolation and configurability; cf. Sec. 5.1.1)
are known, it is not clear when and according to which design rules they shall be ap-
plied. Thus for FRAMBOISE procedures were investigated that enable a systematic
component generalization. Thereby we experienced that methods to generalize class
frameworks systematically are to some extent applicable to the component level.

In the next paragraph techniques enabling a systematic class framework general-
ization are discussed, followed by a description of how these techniques are applied in
FRAMBOISE.

Systematic Framework Generalization

A method to generalize class frameworks systematically is proposed in [Sch97]. This
procedure separates the development of a class framework into several distinct activi-
ties:

1. A class model for a fixed application is designed.

2. In ahot spot high-level analysisall hot spots are collected and briefly described.

3. Thehot spot detail analysis and specificationactivity is done for each hot spot.
The variability and flexibility requirements are analyzed in detail and the hot
spot characteristics are described according to the following list:
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• Hot spotname.

• Shortdescription.

• Common responsibility Rthat generalizes the different alternatives.

• Differentalternativesrealizing R.

• Kind of variability required (e.g., different kinds of bank accounts).

• Whether some or all of the variability may be covered byparameterization.

• Granularity, i.e., whether the hot spot covers one (elementaryhot spot) or
multiple variable aspects (nonelementaryhot spot).

• Multiplicity gives the number of alternatives (either one or n) that are si-
multaneously bound to a hot spot.

• Binding timeis either application creation or at runtime whereas the latter
is distinguished between once or multiple times.

4. Thehot spot subsystem high-level designactivity derives the classes and struc-
ture of a so-called hot spot subsystem from the hot spot characteristics. Hot
spot subsystems consisting of a (usually abstract) base class, concrete derived
classes representing the alternatives and eventually further helper classes and re-
lationships. Design patterns [GHJV95] help to determine the detail structure of
a hot spot by describing typical, common and frequently observed relationships
among classes.

5. A generalization transformationintroduces the variability and flexibility of a hot
spot into the class structure. Fixed specialized class and possibly also directly
related classes are replaced with a hot spot subsystem resulting from the high-
level hot-spot subsystem design.

These activities are not performed in one development cycle but are distributed
over several iterations. Typically an application class structure is designed and par-
tially implemented in the initial development cycles. Henceforth a rough hot spot
analysis is performed, followed by a hot spot detail analysis, class structure general-
ization and implementation for one or a few hot spots at a time in further development
cycles. Finallyrestructuring cyclesto refactor aspects that were not well understood
are considered as an intrinsic part of the framework generalization process.

Component Generalization in FRAMBOISE

Component generalization takes place in FRAMBOISE at all component abstraction
levels. At the architecture and the implementation level a general applicability of the
software components is fostered by the adoption of the architecture styles and the
techniques to develop class frameworks respectively. As far as is known no method to
generalize components at the functional level has been proposed so far.
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Such a procedure is, however, necessary even though the architecture and frame-
work design techniques provide for some generality of the software components. Re-
call that designing a modifiable reference architecture and implementing it straightfor-
wardly as a class framework – thereby hoping for the best that the framework imple-
mentation techniques achieve a reasonable component generalization – implies that the
notion of a component and that of a class are blurred in one of the most critical phases
of the unbundling process. Such a “systematic confusion” is an unsound and error-
prone engineering practice which yields usually bad designs (e.g., which generalized
class shall be considered subsequently as component?).

It is, however, feasible to adopt some elements of the framework generalization
techniques described above to generalize functional descriptions of components. The
hot spot analysis and specification are essentially independent from the respective soft-
ware development technique and can therefore be used to identify the variable aspects
of a component framework. The subsequent hot spot subsystem design and the gener-
alization transformation, however, are specific for object-oriented software and are not
applicable for component design.

Instead we establish some rules that enable generalization of components based on
the previous hot spot analysis. These rules are directly related to the hot spot charac-
teristics according to [FSJ99]. Hence there are the following rules:

1. Isolation is applied to separate components from system-specific parts like op-
erating systems or hardware.

2. Isolation is furthermore applied if thegranularityof a hot spot isnonelementary.
Thus the component is split into subcomponents. Each subcomponent provides
exactly one interface corresponding to one variable aspect.

3. Configurabilityis applied if the hot spot under consideration isparameterizable,
i.e., the respective interfaces are enhanced by states that represent the parame-
ters.

4. A component iswidenedin order to achieve uniformity if themultiplicity of a
hot spot isone. Hence the variations are integrated into one single interface.

5. Narrowingis applied if themultiplicityof a hot spot isn. The original component
is split into n subcomponents providing a specialization of the narrowed interface
of the supercomponent.

These rules enable a designer to generalize functional descriptions of components
in a controlled way. The benefit of this approach is that it is feasible to gain spec-
ifications of reusable software components that aregeneric, i.e., do not refer to any
component infrastructure and programming method.
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7.2.3 The Component Development Process

Component development is not intended to be carried out in a strict top down manner
as Figure 7.2 might suggest. Instead component development is performed as around-
trip gestalt design, i.e., as a procedure that emphasizes the incremental and iterative
development of a system through the refinement of different logical and physical views
of the system as a whole. The above three levels of abstraction provide these different
views so that a component developer navigates deliberately between them during the
design process. As Figure 7.3 illustrates, the FRAMBOISE component development
process contains the following activities:

Identify Components

and Connectors

Specify Components

FunctionallyComponents

Implement

Generalize

Components

Figure 7.3: The Component Development Process

1. Identification of the components and connectors. The developer identifies the
major components and their interconnection mechanisms in order to establish
the boundaries of the problem at hand. The outcome of this activity is a descrip-
tion of the components at the architectural abstraction level.

2. Functional specification of the components. Based on the architecture specifica-
tion, the developers derive detailed interface definitions (described in ASL) and
establishes a first fixed-grade functional component specification.

3. Component Generalization. At this stage the developers perform the component
generalization as described in the previous paragraph.

4. Component Implementation. The components are implemented by means of the
chosen implementation technology and component infrastructure. The subsys-
tem design activities to generalize the class framework structure takes also place
in this phase.

Round trip gestalt design is a recognition of the fact that the big picture of a design
affects its details and vice versa. Thus it is an appropriate method to perform extreme
programming.
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7.3 Providing the Rulebase Component

In this section we exemplify the component development process by means of a com-
prehensive example. The structure of this section follows the order of the component
development process depicted in Figure 7.3. Hence the identification of the rulebase
component is discussed in Section 7.3.1. The functional description of this component
is presented subsequently in Section 7.3.2, followed by the component generalization
in Section 7.3.3. Finally an approach to implement the rulebase is shown in Section
7.3.4.

7.3.1 Identification of the Rulebase Component

According to the reference architecture (cf. Sec. 6.2.2), the rulebase component main-
tains the rulebase persistently and provides facilities to define and modify the rule-
base items4. Furthermore this component ensures the consistency of the rulebase, e.g.,
names and IDs must be unique and event definitions must not be deleted if they are part
of a rule definition or a complex event definition. Finally, modifications of the rulebase
are communicated to the other components of an ECAS. The rulebase is specified in
WRIGHT as follows:

ComponentRulebase(nRbAcc: 1. . . )
Port RbAcc1...nRbAcc+1 = IServerPush
Port EventSubscr = IClientPull
Port CondActLib = IClientPull
Computation =

‖∀ i ∈ nRbAcc+ 1‖RbAcci.open→ Listeni

whereListeni = RbAcci.request?x→ (RbAcci.result!y u
EventSubscr.open→ EventSubscr.request!event→

EventSubscr.result?x→ EventSubscr.close→ RbAcci.result!y
u CondActLib.open→ CondActLib.request!event→

CondActLib.result?x→ CondActLib.close→ RbAcci.result!y

Based on this specification it is feasible to design the functional specification of the
rulebase component.

7.3.2 The Functional Component Description

In order to define the rulebase functionally, the structure of the elements to be managed
by this component must be specified beforehand. We design the event, condition/action
and rule definitions as first class objects according to [DPP91]. Thereby at the begin-
ning two concrete event types are assumed, namelyabstractandmethod events. Thus
the following class structure for this rule schema is established:

4 We summarize event condition action and rule definitions asrulebase items.
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EventDef

getRuleNames()

ConditionDef

setQuery()
getQuery()

AbstrEventDef
MethodEventDef

getMethodName()
setMethodName()

ActionDef

setAction()
getAction()

RuleDef

setPriority()
getPriority()
setEvent()
getEvent()
setConditionCoupling()
getConditionCoupling()
setCondition()
getCondition()
setActionCoupling()
getActionCoupling()
setAction()
getAction()
setRuleName()
getRuleName()
setPriority()
getPriority()
setEvent()
getEvent()
setConditionCoupling()
getConditionCoupling()
setCondition()
getCondition()
setActionCoupling()
getActionCoupling()
setAction()
getAction()

RulebaseItem

getName()
setName()

Figure 7.4: Class structure of a Simple Ruleschema
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The WRIGHT component specification and the rule schema enables a basic func-
tional component description to be established which will be generalized subsequently.
From the WRIGHT description three service interfaces can be inferred forming the ba-
sic component, i.e,RbAcc implies an interface to invoke services from the rulebase. In
principle the interface consists of operations to create, update, query and delete event,
condition, action and rule definitions. For the sake of readability subsequently only the
operations to create rulebase items are described and the other operation types are left
aside. The functional description of theRbAcc interface looks as follows:

INTERFACE RbAcc {

void createRulebase(in String rulebaseName)
raises(NameClash)

//further services to open, modify and remove a rulebase

void createAbstrEventDef(in String eventName)
raises(NameClash)

precondition{getEventDef(eventName) == null;}
postcondition{getEventDef(eventName).getName(eventName)

== eventName;}

void createMethodEvent(in String eventName,
in String className, in String methodName,
in boolean beforeAfter)

raises(NameClash)
precondition{getEventDef(eventName) == null;}
postcondition{getEventDef(eventName).getName(eventName)

== eventName;}

//Further services to modify, delete and
//query event definitions

void createConditionDef(in String conditionName)
raises(NameClash)
precondition{getConditionDef(conditionName) == null;}
postcondition{getConditionDef(conditionName).getName()

== conditionName}

//Further services to modify, delete and
//query condition definitions

void createActionDef(in String actionName)
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raises(NameClash)
precondition{getActionDef() == null;}
postcondition{getActionDef().getName() == actionName}

//Further services to modify, delete and
//query action definitions

void createRuleDef(in String ruleName, in int prio,
in EventDef event,
in int conditionCoupling,
in ConditionDef cond,
in int actionCoupling,
in ActionDef action)

raises(NameClash)
precondition{getRuleDef(ruleName) == null;}
postcondition{getRuleDef(ruleName).getName()

== ruleName}

//Further services to modify, delete and
//query rule definitions

}

The portEventSubscr implies an interface through which the rulebase notifies
a listener (typically the event service) about modifications in the rulebase concerning
event definitions.

interface EventSubscr {
void RegisterEventDef(in EventDef event);

//Further services to modify, unregister etc. events
}

Finally the portCondActLib is refined by means of an interface through which
the rulebase invokes a listener (typically the rule execution component) about modifi-
cations in the rulebase concerning condition and action definitions definitions.

interface CondActLib {

void CompileAction(ActionDef action);
//Further services to modify, remove etc. actions

void CompileCondition(ConditionDef condition);
//Further services to modify, remove etc. conditions

}
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An ASL component description consists of one or moreprovidedand required
interfaces as shown in the following functional description of a fixed grade rulebase
component:

component FixedGradeRulebase {
provides RbAcc rulebaseService;
requires EventSubscr eventListeners;
requires CondActLib operationLibraries;
...

}

A fragmentary event service might look as follows:

component BasicEventService {
provides EventSubscr eventBase;
...

}

Composite componentsare specified in ASL bybindinga required interface of one
subcomponent to a provided interface of another. Thus the rulebase and event service
components are integrated in an ECAS as follows:

component BasicECAS {
BasicRulebase rulebase;
BasicEventService eventService;

bind rulebase.eventListeners
to eventService eventBase;

}

The functional description of the rulebase component is a basis for the subsequent
component generalization.

7.3.3 Generalizing the Rulebase Component

In order to generalize the rulebase first the hot spot analysis is performed and then each
hot spot is generalized in turn.

Hot Spot Analysis

A hot spot analysis enables a generalization of the above design into the design of a
reusable software component. First, the hot spot high level analysis clarifies that the
following two hot spots are necessary:

1. A rulebase component must be provided in a way that different sets of rulebase
items (e.g., various event types) can be managed for a different ECASs.
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2. It must be feasible to build rulebase components for different persistent storage
systems (e.g., DBMSs, flat files etc.).

The detailed analysis of these hot spots reveals the following characteristics:

Hot Spot 1: Variability of Rulebase Items

• Description: According to the rule model of the respective ECAS, the rulebase
must be able to store the the definitions of various event types.

• Common responsibility: Provision of create, read, update and delete (CRUD)
operations for the respective rulebase items.

• Examples of alternative realizations: Value, time and complex events as well as
DBMS-specific database updates are different alternatives that may be supplied
as event types. Furthermore condition and action definitions may be outlined for
specific DBMSs or system environments.

• Kind of variability required: Maintain rulebase items from different classes.

• Parameterization is not possible.

• Granularity: elementary.

• Multiplicity: n chain structured.

• Binding time: Creation time of the ECAS.

Hot Spot 2: Variability of Rulebase Storage

• Description: A rulebase must be portable for different storage mechanisms in
order to store the rulebase eventually by means of the DBMS for which an ECAS
is provided.

• Common responsibility: Provides access to a persistent storage.

• Examples of alternative realizations: Flat files as well as relational or object-
oriented DBMSs.

• Kind of variability required: Different storage mechanisms may be used to store
a rulebase item persistently.

• Parameterization is not possible.

• Granularity: elementary.

• Multiplicity: One since a rulebase is stored entirely using the same storage
mechanism.
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• Binding time: Creation time of the ECAS.

Both hot spots are orthogonal, i.e., the may vary independently of each other.

Generalizing Hot Spot 1

The hot spots analyzed above provide the basis to generalize the design depicted in
Figure 7.4. First, the multiplicity of hot spot 1 (Variability of Rulebase Items) is n.
According to the generalization principles the rulebase component should be decom-
posed into subcomponents whereas we apply narrowing.

This is achieved by decomposing the rulebase component into different subcom-
ponents – so-calledrulebase cartridgeswhich are responsible for a specific type of
rulebase item (e.g., one specific event definition type). A rulebase cartridge provides
accessor functionality to the respective rulebase item, manages it persistently and co-
operation with the other rulebase cartridges. Thus the provided interfaceRbAcc must
be sliced interfaces that are provided by the respective rulebase cartridge.

For example a cartridge for abstract event definitions might look as follows. First
a narrowed interface is specified providing the services to query for specific event
definitions.

interface EventAccess2Query {
EventDef getEventDef(in String eventName)

void deleteEventDef(in String eventName)
precondition {(this.getEventDef() == null) or

(this.getEventDef().getRuleNames() == null);}
postcondition {this.getEventDef() == null;}

//Further query services that are applicable for
//arbitrary event definitions...

interface EventAccess2Modify : EventAccess2Query {
EventDef getEventDef(in String eventName)

void deleteEventDef(in String eventName)
precondition {(this.getEventDef() == null) or

(this.getEventDef().getRuleNames() == null);}
postcondition {this.getEventDef() == null;}

//Further query services that are applicable for
//arbitrary event definitions...

Then we specialize this interface for an interface that enables modifiable access to
generic events.

First there is its slice from the RbAcc Interface:
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interface AbstrEventAccess : EventAccess2Modify {
void createAbstrEventDef(in String eventName)

raises(NameClash)
precondition{getEventDef(eventName) == null;}
postcondition{getEventDef(eventName).getName(eventName)

== eventName;}
//Further query services that are applicable for
//arbitrary event definitions...
}

In order to preserve maximal flexibility, theAbstrEventAccess interface is
accessed directly from the clients of the rulebase. Thus the abstract event cartridge
must be able to query the rulebase to ensure for instance, uniqueness of the event
names upon event definition.

Thus the abstract event cartridge looks as follows:

component AbstrEventCartridge {
provides AbstrEventAccess;
requires EventAccess2Query;
requires RuleAccess2Query;

}

The rulebase component provides a frame where the cartridges are plugged into,
mediates the interoperation between the cartridges and regulates the communication
to the other components along the provided interfaces. Hence the generic rulebase
component looks as follows:

component SimpleRulebase {

provides EventAccess2Query;

AbstrEventCartridge abstrEvents;
MethodEventCartridge methodEvents;
ConditionCartridge conditions;
ActionCartridge actions;
RuleCartridge rules;

bind abstrEvents.EventAccess2Query
to this.EventAccess2Query;

bind abstrEvents.RuleAccess2Query
to rules.RuleAccess;

}
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Generalizing Hot Spot 2

According to the generalization principle 1, the hot spot 2 is solved by splitting a car-
tridge into a generic subcomponent that ensure general principles (such as certain con-
sistency rules) and another subcomponent that implements the access to the respective
storage facility.

The generic part is a cartridge accessor and enforces the policies that are not de-
pendent from the chosen storage mechanism. The other subcomponent provides the
persistence mechanisms. It implements theAbstrEventAccess interface through
which the persistence facilities are accessed. Furthermore it requires an interface that
gives access to specific storage facilities. For instance an abstract event definition stor-
age component looks as follows:

component AbstrEv4Cloudscape {
provides AbstrEventAccess ;
requires DBSession;

}

Through the interfaceDBSession the component handles the session with the re-
spective persistence facilities. These session handles are provided by a specific session
handling subcomponent which is also a subcomponent of the rulebase component.

The generic cartridge subcomponent looks as follows:

component AbstrEventDefPolicy {
provides AbstrEventAccess;
requires AbstrEventStorage;
requires EventAccess2Query;
requires RuleAccess2Query;

}

The interfaceAbstrEventStorage specializesAbstrEventAccess through
persistence related elements (e.g., specific exceptions etc.).

Hence a specific AbstrEventDefCartridge looks as follows:

component AbstrEv4Cloudscape {

provides AbstrEventAccess;
requires EventAccess2Query;
requires RuleAccess2Query;
requires DBSession;

AbstrEventDefPolicy policy;
AbstrEv4Cloudscape storage;

bind this.AbstrEventAccess

126



www.manaraa.com

to policy.AbstrEventAccess;
bind this.EventAccess2Query

to policy.EventAccess2Query;
bind this.RuleAccess2Query

to policy.RuleAccess2Query;
bind policy.AbstrEventStorage

to storage.AbstrEventStorage;
bind this.DBSession

to storage.DBSession;
}

Thus the rulebase component has been generalized. Further activities to promote
reusability take place when the component is implemented.

7.3.4 Implementation of the Rulebase Component

This section illustrates how the functional specification of a generalized component is
mapped to the implementation for a specific component infrastructure. First the infras-
tructure we chose for the prototypical implementation of FRAMBOISE is presented,
followed by a discussion of the principles underlying the implementation design. Sub-
sequently the implementation of subcomponents of the rulebase (i.e., the cartridges)
and the overall rulebase component is discussed.

Java, Java Beans and InfoBus

FRAMBOISE was implemented prototypically by means of the Java programming
system and its component model Java Beans whereby the components were wired by
means of InfoBus. Each of these elements is presented briefly in turn.

Java The Java programming language released by Sun Microsystems in the mid-
1990s was designed to be hardware-independent by compiling to an artificial byte-code
instruction set that could be easily implemented in an interpreter on almost any micro-
processor device. Java is purely object-oriented with all data types apart from some
primitive ones (integers, floats, characters etc.) as classes. The syntax is loosely based
on C++ but Java eliminates many of the most difficult aspects of C++ programming.
There are no pointer types in Java; all memory variables and objects are handled as ref-
erences. Objects are created with anewoperator but Java provides a built-in garbage
collector that automatically deletes the objects when they go out of scope or are no
longer referenced. This eliminates the memory leak problems associated with C++.
Java has also the advantage of extensive class libraries.

Java Beans As Java continues to mature, a number of extensions and APIs have
been added to provide additional capabilities. One is the so-calledJavaBeanstandard
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to create reusable software components with Java. Principally any object conforming
to certain basic rules can be a bean; there is nothing like aBean that all beans are
required to subclass.

The main aspects of the bean model are:

• Events.Beans can announce (by implementing certain methods) that their in-
stances are potential sources or listeners of specific event types.

• Properties.Beans expose a set of instance properties through pairs ofget...
andset... methods. Properties can be used for customization at assembly
time as well as programmatically during execution time. Property changes can
trigger (bean) events and they can be constrained to be modified only if the
modification is not vetoed by specific beans (so-called vetoable listeners).

• Introspection.A bean can be inspected by an assembly tool to find out about the
properties, events and methods that a particular bean supports.

• Customization.Using an assembly tool, a bean instance can be customized by
setting its properties.

• Persistence.Customized and connected bean instances need to be saved for
reloading at the time of application use.

InfoBus Normally, all beans loaded from the same classloader are visible to each
other by searching the container-component hierarchy or their bean context. They can
use reflection and design patterns to determine which services are provided by other
beans. However, this approach is often cumbersome and prone to error. Thus Lotus
Development Corporation and JavaSoft developed InfoBus as a standard approach to
exchange data between beans as well as to simplify inter-bean communication.

The InfoBus operates analogously to a PC system bus. Data consumers and data
producers in the same way that PC cards connect to a PC’s system Bus. Data producers
use the bus to send data items5. The InfoBus is asynchronous and symmetric. That
means that producer and consumer do not have to synchronize to exchange data and
any member of a bus can send data to any other member of the bus.

The InfoBus operates as follows:

• Beans, components and other objects join the InfoBus by implementing the
InfoBusMember interface, obtaining anInfoBus instance and using an ap-
propriate method to join the instance.

• Data producers implement theInfoBusDataProducer interface and data
consumers implement theInfoBusDataConsumer interface. These inter-
faces define methods for handling events required for data exchange.

5The unit of data exchanged on an InfoBus is referred to asdata itemimplementing the interface
DataItem .
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• Data producers signal that named data items are available on anInfoBus object
by invoking the InfoBus’sfireItemAvailable() method.

• Data consumers get named data items from anInfoBus object by invoking
therequestDataItem method of theInfoBusItemAvailable event re-
ceived via theInfoBusDataConsumer interface.

The Java component infrastructure was chosen for the prototypical implementation
of FRAMBOISE because a lightweight component infrastructure such as provided by
Java Beans and InfoBus was favored.

Design Principles

The rulebase implementation was designed according to the following principles.

• The rulebase component is a Java Bean. Thus components interchangeably will
also be referred to as (Java) Beans.

• The rulebase is composed on subcomponents which represent also Java Beans.

• The rulebase interacts with its subcomponents by explicit invocation.

• The rulebase interacts with other components via the InfoBus.

Note that these guidelines have correspondingly been applied for the implementation
of all FRAMBOISE components.

Cartridge Subcomponents

According to the functional specification, a cartridge component is decomposed into
the policy and the storage subcomponent. The former provides the access to the car-
tridge’s functionality and the operations that do not depend on the storage facilities
whereas the latter stores the rulebase item persistently.

Even though the interfaces of these subcomponents are at the functional level quite
similar, their bean implementations belong to different class hierarchies as shown in
Figure 7.5 for the cartridge providing abstract event definitions. Since the policy sub-
component provides the public access to this cartridge, the decision was made to im-
plement it as a data item6 that can be invoked via the InfoBus. Storage beans, however,
are not implemented as data items because they are not accessible from outside their
containing cartridge. It is furthermore conceivable to specify different policy compo-
nents that interoperate with the same storage components (but not with the identical
component instances). The other way round, the same policy component must be able
to interoperate with storage components for different persistence facilities.

6 This name is insofar misleading as principally any object can be aDataItem . It is not uncommon
to implement component interfaces as data items which are accessed via the InfoBus. This enables a
highly dynamic deployment of Java Beans.
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IAbstrEventDefAccess
getAllAbstrEventDefs()
getAbstrEventDef()
createAbstrEventDef()
deleteAbstrEvDef()
addVetoableChangeListener()
removeVetoableChangeListener()

<<Interface>>

JDBCAbstrEventDefStorage

getAllAbstrEventDefs()
getAbstrEventDef()
createAbstrEventDef()
deleteAbstrEvDef()

(from JDBC)

DataItem
(from infobus)

<<Interface>>

IAbstrEventDefStorage
getAllAbstrEventDefs()
getAbstrEventDef()
createAbstrEventDef()
deleteAbstrEvDef()

<<Interface>>

AbstrEventDefCartridge

AbstrEventDefPolicy
getAllAbstrEventDefs()
getAbstrEventDef()
createAbstrEventDef()
deleteAbstrEvDef()

1..11..1

#fSource

1..1

#fAccessor

1..1

Bridge

VetoableChangeSupport
(from beans)

Figure 7.5: The Implementation of the Abstract Event Definition Cartridge
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Thus, specializations of the policy and storage bean classes may vary indepen-
dently, indicating that this part of the class framework should be designed according
to thebridge design pattern [GHJV95]. In this approach the features of a hot spot
are accessed via a so-calledabstractionhierarchy that invokes methods of classes be-
longing to a so-calledimplementationhierarchy. Thereby the relationship between
the abstraction and implementation hierarchy is provided at exactly one point, i.e., the
bridge.

Note that theEventAccess2Query andRuleAccess2Query interfaces which
are specified as “required” at the functional level do not appear in the bean implemen-
tation. These interfaces are merely required to enable the policy subcomponent to
check for specific consistency rules (e.g., duplicate event names) in order to prevent
invalid modifications at the rulebase. The bean model allows the implementation of
so-calledvetoable changesthat enable specific observers to veto an operation. Thus
the rulebase component might for instance veto against the deletion of an event defini-
tion that is still required in a rule. Due to the anonymity of the vetoable observers this
bean-specific technique promotes an even looser coupling between components than
assumed at the functional level.

The Rulebase Component

The rulebase component depicted in Figure 7.6 sets the stage to deploy the various
cartridges and session handling components. It is therefore a facility of thecomponent
framework implementation. The rulebase ensures that all deployed subcomponents are
correctly initialized and mediates afterwards the flow of information between them
(e.g. vetoing the definition of an event whose name clashes with the name of a pre-
viously defined event). Thus the rulebase acts as a data controller on the InfoBus (by
implementing theInfoBusDataController interface), i.e., as a bean that is able
to control which member of the InfoBus gets what kind of events.

The basic functionality of the rulebase (e.g., creation of a new rulebase) may be
accessed via the InfoBus by means of aRulebaseAccess data item which for-
wards the requests subsequently to the actual rulebase component. A scenario of an
exemplary interaction of two rulebase clients with a rulebase component is depicted in
Figure 7.7:

1. Client 1 requests the InfoBus for theRulebaseAccess item.

2. The InfoBus forwards this request as adataItemRequest to the rulebase.

3. The rulebase returns theRulebaseAccess item to the InfoBus.

4. TheRulebaseAccess item is subsequently handed to client 1.

5. Client 1 requests accessing rulebase “xxx” by invokingopen on
RulebaseAccess .
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InfoBusDataController
(from infobus)

<<Interface>>

IRulebase

createRulebase()
openRulebase()
closeRulebase()
removeRulebase()
isRulebaseOpen()
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<<Interface>>
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Figure 7.6: Class Design of the Rulebase Component
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 : InfoBus

 : Rulebase

Rulebase 
Client 1

 : JDBCRulebaseStorage

Rulebase 
Client 2

 : AbstrEventDefCartridge

 : AbstrEventDefPolicy

 : RulebaseAccess

2: dataItemRequested(RulebaseAccess)

3: RulebaseAccess

9: dataItemRequested(AbstrEventDefPolicy)

10: AbstrEventDefPolicy

7: open("xxx")

1: findDataItem(RulebaseAccess )

4: RulebaseAccess

5: open("xxx")

8: findDataItem(AbstrEventDefPolicy )

11: createAbstrEventDef("aaa")

6: openRulebase("xxx")

Figure 7.7: Interaction with a Rulebase Component
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6. RulebaseAccess forwards this request asopenRulebase(‘‘xxx’’) to
the rulebase component.

7. The rulebase component establishes a session with the persistence facility by
invokingopen’’xxx’’ of theJDBCRulebaseStorage component.

8. Client 2 requests the InfoBus for access to the abstract event definitions
(findDataItem("AbstrEventDefPolicy" ).

9. Since the rulebase is open this request is directly forwarded to the
AbstrEventDefCartridge .

10. TheAbstrEventDefPolicy is returned by the Cartridge component.

11. Client 2 initiates the creation of the abstract event ”aaa”.

Note that the rulebase component is not only a data controller but it acts also as a
producer by providing theRulebaseAccess item.

7.4 The FRAMBOISE Development Framework

The implementation of the FRAMBOISE components, as well as of the component
framework is organized as an object-oriented class framework which is calledFRAM-
BOISE Development Framework(FDF). The classes of the FDF are divided into the
following categories (Fig. 7.8) There are on the one hand three categories that include

Component Framework

Support

Rule Development Support

Peripheral Classes

Classes
UtilityKernel Classes

Figure 7.8: Organization of the FRAMBOISE Development Framework

classes used to implement components of an ECA system i.e.,

• The Kernel Classesimplement the system-independent basic functionality of
an ECAS such as rule execution, rulebase management etc. These classes are
principally applicable for any ECAS.
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• ThePeripheral Classesprovide the functionality to implement the adapters through
which an ECAS interacts with a DBMS as well as with the (operating) system
environment. Most of these classes are typically specialized for specific DBMSs
respectively operating systems.

• TheRule Development SupportCategory includes those classes that are required
to provide components that are used to build rule development tools like a rule-
browser, rule debugger, rule editor etc.

• The classes to implement the component integration software are summarized
as theComponent Framework Supportcategory.

• Finally there are a number of general purpose classes such as string tokenizers,
specific collection classes etc. which are used by all of the above categories. We
address them asUtility Classes.

Conceiving the FRAMBOISE development framework as a class framework is primar-
ily designed to support rebundling, i.e., to facilitate white box reuse when an ADBI
must provide novel components. An implementation overhead in the unbundling pro-
cess due to the complex class framework design activities has thereby been taken into
account in order to foster an efficient ECAS construction.

The design of the FRAMBOISE development framework was investigated in two
distinct phases. At the first stage, an initial class structure based on the reference
architecture was designed thereby incorporating experiences made during realization
of the object-oriented ADBMS SAMOS [GGD+95b].

The initial framework design closely followed the reference architecture described
in Chapter 6, i.e., the elements of this architecture were straightforwardly mapped to
corresponding classes and interconnection mechanisms (e.g. pipes were implemented
as UNIX named pipes). The class framework was implemented in C++ to run on SUN
SPARC workstations under SunOS 5.5. (Solaris) thus enabling the reuse of the C++
code written for SAMOS. It consisted of about 150 classes that provide the process-
ing of various primitive event types (abstract and object-related events) as well as the
detection and the subsequent processing of complex events as they are proposed in the
rule definition language of SAMOS [GD94a]. Furthermore, the framework included a
comprehensive rule execution facility, offering various options (e.g. priorities, conflict
resolution strategies, cycle policies) to process rules.

According to recommended practices [Sch97], the initial framework was intention-
ally designed as a rather fixed application7 and was not yet outlined as a foundation
to provide reusable software components in the sense of the FRAMBOISE component
model.

Actual component design was performed in a subsequent step. The components
were systematically generalized as described above and ported the framework to the

7Changeable aspects were identified occasionally and the corresponding hot spot subsystems were
designed, however, this was not systematically pursued at this stage.
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Java programming language, using the Java Beans component model. Subsequent
investigations that based onvertical prototypes(i.e., implementing a specific facet
completely) relied on this implementation.
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Chapter 8

Constructing ECA Systems

The bundling process presented in Section 5.3 defines the principal procedure accord-
ing to which ECASs are built. It is basically feasible to assemble ECA Systems exclu-
sively with the assistance of general-purpose facilities such as compilers, debuggers,
compiler generators (to provide an RDL compiler for the respective ECAS) etc.

Such a method, however, is error-prone, due to the various alternatives of active
database behavior. It is easy to conceive that an ADBI overlooks an element (e.g., a
specific coupling mode) with the consequence that it is subsequently very difficult to
grasp the rule execution behaviour of the operational ECAS. Recalling the inherent
difficulties of rule development and maintenance (cf. Sec. 2.4), it is obvious that
ECASs were rather a nuisance than value-adding facilities and would even endanger
the overall systems where they are deployed.

FRAMBOISE must therefore provide assistance to assert that all aspects of active
database mechanisms are taken into account by the ADBI as well as that a rebundled
ECAS behaves according to the desired rule execution semantics.

Building component-oriented software systems consists obviously on three basic
activities: One must clarify what the overall system shall achieve, one must identify the
adequate components and must assembly them together into a coherent system. Thus
Section 8.1 presents how an ECAS is specified, followed by the classification schema
in Section 8.2 and the procedure to assemble ECA Systems (Section 8.3). Section 8.4
concludes the chapter.

8.1 The Specification of ECA Systems

ECAS construction should not start with the composition of an ECAS right away,
since the variety of alternatives of active database behavior is rather complex. Thus,
it is appropriate to provide in FRAMBOISE a higher abstraction level that enables an
ADBI to “think” for instance in terms of cycle policies for rule execution instead of
scheduler components.

The FRAMBOISErequirements specification languageis a means for an ADBI
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to declare specific features of the underlying DBMS and of the system environment
and to define the functionality of the prospective ECAS, i.e., the knowledge and rule
execution model etc. In this section the chief aspects of the specification language
are presented (the complete language can be found in Appendix B). The syntax is
expressed in the extend Backus Naur Form (EBNF).

The overall structure of a requirements specification is as follows:

ECAS ::= ‘‘ECAS’’ ECASName DBMSAspects
KnowledgeModel ExecutionModel
RuleManagementAspects.

8.1.1 Declaration of DBMS Characteristics

Characteristics of the underlying DBMS that must be taken into account for the re-
quirements specification of an ECAS.

DBMSAspects ::= "DBMS" Datamodel Datamodel ";"
Datamodel ::= "DATAMODEL" ("relational" |

"objectoriented" ) ";"

DML_Statements ::= "DML_STATEMENTS"
("interruptable" |
"non-interruptable") ";"

Interruptable DML statements are a prerequisite to define a recursive cycle policy (cf.
section 8.1.3), because a DML statement must be suspended in order to allow the
ECAS to process events which are raised due to the respective DML statement.

8.1.2 The Specification of the Knowledge Model

In order to specify the knowledge model of an ECAS, the ADBI declares which kind
of events are to be monitored and under what circumstances conditions are evaluated
and actions are executed.

KnowledgeModel ::= "KNOWLEDGE_MODEL" EventTypes
ConditionCharacteristics
ActionCharacteristics

Event types are characterized by their respectiveevent sourcei.e., where the events oc-
cur. Events take place in applications or the operating system (externalevents), in the
underlying DBMS (databaseevents) and finally, in the ECA-System itself (composite
events). Thus, the event types of the ECAS can be specified by means of the following
constructs:
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EventTypes ::= "EVENTS" EventSource
{EventSource}

EventSource ::= (External|Database) |
"COMPOSITE" ) ";"

The event sourceDatabase is further subdivided. First themodification(creation,
update or deletion) of a database entity is considered as an event source. According to
the data model of the underlying DBMS such entity is either atupleof a relation or an
objectof a class extension. An object-oriented DBMS model may also raisemethod
eventsbefore or upon a method invocation. Furthermore the transaction manager of the
DBMS is also a potential event source. Therefore it is possible to specify that an ECAS
processestransaction eventswhich are signalled at the start and end of a transaction.
Finally, the emission of error messages by the DBMS is another potential (database-)
event source. Database error messages have usually a very high priority. Therefore
they can also be specially processed by an ECAS. Database events are specified as
follows:

Database ::= "DATABASE" ("modification"|"method"|
"transaction"|"error")

Presently FRAMBOISE distinguishes two external event sources: On the one hand
the so-calledabstract eventswhich are explicitly raised by the users. Raising abstract
events is also an adequate means to signal application events. On the other hand the
system clock is regarded as a particular event source for external events. External event
types are accordingly specified:

External ::= "EXTERNAL" ( "clock"|"abstract")

Condition characteristics indicate when and how conditions are evaluated.

ConditionCharacteristics ::= "CONDITIONS" Coupling
ConditionEvaluation

Conditions can be evaluated immediately upon event detection or at a later stage upon
signalisation of arule assertion point. Rule assertion points are either explicitly sig-
nalled by a user process or implicitly at the end of a DBMS transaction. Moreover,
coupling modes also refer to the relation between the conditions and their eventual
triggering transaction. We call the formertemporal couplingand the lattertransaction
binding.

Coupling ::= TemporalCoupling TransactionCoupling

TemporalCoupling ::= "COUPLINGS" "immediate"
["deferred"]";"
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TransactionBinding ::= "BINDINGS" ["current"]
["detached"]";"

Finally, the ADBI must specify whether the conditions are queries that are executed
under the control of the DBMS and/or if they are functions running outside the DBMS
context (’stand-alone’).

ConditionEvaluation ::= "EVALUATION" ["DBMS"]
["stand-alone"]";"

The characteristics of actions are specified analogous to the conditions.

ActionCharacteristics ::= "ACTIONS" Coupling
ActionExecution

ActionExecution ::= "EXECUTION" ["DBMS"]
["stand-alone"]";"

8.1.3 The Specification of the Rule Execution Model

The rule execution model prescribes how an ECAS processes triggered rules.

ExecutionModel ::= ‘‘EXECUTION_MODEL’’ CyclePolicy
[ConflictResolution]
RuleConsumptionPolicy
TerminationPolicy

By means of the parameterCyclePolicy , the ADBI defines the rule execution al-
gorithm to be either recursive (i.e., the execution of a rule can be suspended to process
events that are signalled inside it) or non-interruptible.

CyclePolicy ::= "CYCLE_MODE" ("recursive" |
"non-interruptable")";"

The conflict resolution defines which rule of a set of simultaneously triggered rules
is to be executed next.

ConflictResolution ::= "CONFLICT_RESOLUTION"
"absolutepriority"
"relativepriority"]
"FIFO" | "LIFO"";"

Event instances can either be consumed locally or globally. Local event consumption
implies that event instances execute every rule which is triggered by this particular
event. Global event consumption, however, denotes that only one rule is executed,
discarding all other rules that are triggered simultaneously. The rule to be executed is
selected according to the conflict resolution strategy. Thus, global consumption policy
gives the opportunity to overrule the rule execution process, as then the rule with the
highest priority is triggered for a single event instance.
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RuleConsumptionPolicy ::= "RULE_CONSUMPTION"
"local"|"global" ";"

Finally, the ADBI determines if threads of cascading rules are to be terminated by a
limit (which is set and modified at runtime of the ECAS) or if it is granted by the
developer of the active application that no infinite threads occur.

TerminationPolicy ::= "TERMINATION" ("granted"|
"limit")";"

8.1.4 Aspects of the Rule Management Model

The ADBI has to provide information whether the rulebase can be modified “on the
fly” or whether an ECAS must be halted and restarted in order to activate modifications
of the rule schema. The latter might for instance be necessary to enable static linking
of external routines that represent an action.

RuleManagementAspects ::= "RULE_MANAGEMENT" Adaptability
Adaptability ::= "ADAPTABILITY" ("static" | "dynamic")";"

Static adaptability implies that restricted modification of the rulebase is still possible
e.g., by recombining previously linked conditions and actions in different rules. How-
ever, modified and new rulebase elements are deactivated until the system restarts. In
the meantime, the ECAS remains operational, but will emit a warning if such inactive
objects are triggered.

8.1.5 Examples

The following example specifies a simple ECAS to process triggers asynchronously as
proposed in [SB99a] (cf. Sec. 3.2.5).

ECAS ATP
DBMS

DATAMODEL relational;
STATEMENTS non-interruptable;

KNOWLEDGE_MODEL
EVENTS

DATABASE modification;
CONDITIONS

COUPLINGS deferred;
BINDINGS detached;
EVALUATION DBMS stand-alone;

ACTIONS
COUPLINGS deferred;
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BINDINGS detached;
EXECUTION DBMS;

EXECUTION_MODEL
CYCLE_MODE non-interruptable;
CONFLICT_RESOLUTION FIFO;
RULE_CONSUMPTION local;
TERMINATION limit;

RULE_MANAGEMENT dynamic;.

The following example specifies an ECAS that provides together with an object-
oriented DBMS the functionality of the ADBMS SAMOS.

ECAS SAMOS
DBMS

DATAMODEL objectoriented;
STATEMENTS interruptable;

KNOWLEDGE_MODEL
EVENTS

EXTERNAL clock;
EXTERNAL abstract;
DATABASE modification;
DATABASE method;
DATABASE transaction;
COMPOSITE;

CONDITIONS
COUPLINGS immediate deferred;
BINDINGS current detached;
EVALUATION DBMS stand-alone;

ACTIONS
COUPLINGS immediate deferred;
BINDINGS current detached;
EXECUTION DBMS stand-alone;

EXECUTION_MODEL
CYCLE_MODE recursive;
CONFLICT_RESOLUTION absolutepriority;
RULE_CONSUMPTION local;
TERMINATION granted;

RULE_MANAGEMENT static;.

8.2 Component Classification in FRAMBOISE

Components must be cataloged in order to be able to identify and retrieve them in
an efficient way. By defining the FRAMBOISE component schema (cf. Sec 4.1.5
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and Fig. 4.1), it was specified what kind of the information has to been stored and
packaged together with a software component. One specific element of this compo-
nent schema is the so-calledclassification information. This category of information
enables component identification and retrieval. We present in this section how compo-
nents are classified in FRAMBOISE. In the next section, the basic issues of software
component classification are discussed. Afterwards, in Section 8.2.2, we present the
so-calledfaceted classificationthat is applied in FRAMBOISE as shown subsequently
in Section 8.2.3.

8.2.1 Classifying Software Components

It is actually not yet clear how to specify a software component [Szy97] even though
one agrees that catalogue information should principally consist of precise specifica-
tions of what components do and what platform requirements they have. Research has
concentrated so far on how to catalog and retrieve components but there are no meth-
ods that are proven to work with components of substantial complexity. There are
various indexing vocabularies to classify components, beginning with generally appli-
cable approaches like free text, keyword classification and enumerated classifications
(alike a ISBN number) to more specialized classification schemas that rely on specific
facets or attributes (for a comprehensive overview cf. [Sam97]).

Empirical studies [FP94] revealed that there were no significant differences be-
tween keyword, attribute value and and faceted classification with respect to search
effectiveness and user preferences, even though search times differed significantly.

8.2.2 Faceted Classification

Faceted classification was originally proposed by the Indian mathematician S. R. Rang-
hanatan [Ran57] whereas a faceted classification schema for the reuse of function-
oriented software was described in [PD85, PDF87]. This technique principally intends
to classify something along several dimensions that are referred to asfacets. Each
facet can be represented by a set oftermswith any kind of structure (i.e., words, list
of words etc.). In principle a facet is just a multivalued attribute, where there can be
some control or structure on the attribute values (terms).

Faceted classification is an adequate method to categorize software components,
because it allows to classify the components according to several aspects. It, however,
is not trivial to determine which characteristics should be represented by facets. To
choose suitable facets for classifying a set of components, the following steps must be
performed [Kar95]:

• Construct an overview of the components of interest.

• Determine which aspects of a components are most important for retrieval.

Thereby one should take the following principles into account:
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• Expressiveness. Each facet must say something about the component that is
interesting to the person wanting to retrieve it.

• Tractability. There must be no more facets than a developer can cope simulta-
neously with it. Three to six facets are considered as appropriate.

• Conciseness. Each facet should be well defined. There should be no ambiguity
about which facet covers which aspect of a component and the facets should be
orthogonal to each other as possible.

• Relevance. All facets should be relevant for most components, regardless of
their size, form, internal structure or contents.

• Ease of Construction. It should be as easy as possible to construct a term space
for the chosen facets.

Faceted classification has been applied to classify specific DBMS kernel services [Gep94]
as well as to classify event based systems [Tom99].

8.2.3 Application for FRAMBOISE

We classify components in FRAMBOISE with the following five facets:

Abstraction: This facet describes what a component is. Usually a component can be
described by a noun that stems from the vocabulary of the reference architecture,
e.g., an event signal processor.

Target DBMS: Indicates for which specific DBMS a component is applicable.

ADBS Functionality: Indicates the knowledge and the execution model for which
the component is applicable. It bases on the vocabulary of the specification
language.

Rule Management: Describes how rules are managed. It bases likewise on the vo-
cabulary of the specification language.

Constraints: This facet lists dependencies (platform and other) which constrain po-
tential reuse of the component, e.g., Unix-based, requires JDBC etc.

A facet is a set of attributes that apply for a specific component as shown in the ex-
amples in table 8.1. It is feasible that a facet of a specific component contains no
terms. Such an empty facet is considered asnull value, i.e. there is no informa-
tion available. The letter* indicates that every attribute applies for this facet. For
instance the working memory in table 8.1 is applicable for every DBMS whereas it
is not known whether there are restrictions concerning the rule management. Note
that the DBMSCloudscape[Clo], that is addressed in table 8.1 is an object-relational
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Abstraction Target ADBS Rule Constraints
DBMS Functionality Management

Working Memory * CYCLE MODE Green Threads
recursive

TERMINATION
limited

BINDINGS
deferred

Event Storage Cloudscape EVENTS ADAPTABILITY JDBC
database runtime

Event Detector Cloudscape EVENTS ADAPTABILITY C++
complex runtime VERSANT

SOLARIS

Table 8.1: Example Classification of Components

database management system that is written entirely in Java. It has originally been
devised by Informix.

Experiences with faceted classification method indicate that one should not rely
exclusively on this technique to retrieve components. For instance [PY93] advocates a
combination of classification methods integrated with text searching techniques and hi-
erarchical ordering of the facets. Thus the component retrieval procedure with methods
for glass-box reuse that enable the identification of reusable software through source
code analysis are supplemented. Even though this so-calledcode-scavengingis rather
an ad-hoc and unsystematic procedure, it is considered as a quite effective approach to
reuse software [Kru92]. Recalling that the commercial feasibility of the open-source
model [Ray01] has been proved so far, glass box reuse is in FRAMBOISE also viable
from an economic perspective.

8.3 The Assembly of ECA Systems

An effective construction activity depends also from the ease of the system assembly
and an adequate tool support. The momentum in the Java industry yielded various so-
phisticated software development environments of excellent quality that enable among
other things the visual assembly of applications out of preexisting Java Beans. It is
therefore pointless to investigate thoroughly into the provision of development envi-
ronments for FRAMBOISE. Instead we discuss in this section what kind of tools are
necessary to support an ADBI in the assembly process that goes beyond the scope of
these general purpose tools.

ECA-Systems are basically assembled according to the following procedure (see
Figure 8.1): First, the ADBI specifies the system requirements of the ECAS to be
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ADBI Builders

Repository

generated by FRAMBOISE

Figure 8.1: Construction of an ECA-System with FRAMBOISE

built by means of therequirements specification languageof introduced in section 8.1.
The ADBI is supported here by the so-calledconfiguration manager. This tool first
processes the requirements specification in order to query the repository for candi-
date artifacts and presents the result to the ADBI. The configuration manager, offering
features to browse the repository, allows the ADBI to determine which artifacts are di-
rectly applicable and are accordingly incorporated into the ECAS and which artifacts
are to be specialized or must even be realized from scratch. Afterwards, the ADBI
provides the missing artifacts and makes them available for the further construction
process by integrating them in the repository. Prototypical implementations of these
tools are presented in Appendix C

When the ADBI has finished the configuration process, the configuration manager
generates theconstruction specificationof the ECAS. This document is used as input
to various builder tools which generate the operational ECAS, a rule definition lan-
guage valid for the respective ECAS and accordingly a rule definition language (RDL)
compiler with a rule browser and a rule editor specialized for this ECAS. Hence, the
construction specification is not a functional description like the requirements specifi-
cation, but consists of lists of identifiers indicating concisely which components form
the final ECAS.

The form of the construction specification depends on the technology chosen to
realize the components. With this separation into requirements and construction spec-
ification that resembles the classical division of a compiler into the front- and the
backend (cf. [ASU86]) it is relatively easy to provide the FRAMBOISE specific tools
for different software development environments. It is for instance feasible to generate
grammars that are processed by the Unix ”make utility” in order to build an operational
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ECA Systems. Correspondingly, it is feasible to generate files that are applicable for
specific Java Development Environments.

8.4 Conclusion

This chapter presented which ADBMS-specific facilities are required to perform an
effective rebundling of ECA Systems. We established a specification language that
serves also as a foundation to classify and retrieve components. The vocabulary intro-
duced thereby enables an ADBI to query the component repository according to the
ADBS specifics of the prospective ECAS. Finally the kind of tools that are necessary
to support an expedient assembly of the respective ECA System were sketched.
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Chapter 9

Evaluating FRAMBOISE

In this chapter, it is evaluated whether our conception of a construction system enables
the cost-effective provision of active database functionality for arbitrary DBMSs. First,
the adequacy of the ECA Systems is assessed in Section 9.1 by evaluating its reference
architecture. In order to evaluate the versatility of FRAMBOISE, Section 9.2 evalu-
ates how the construction system combines with techniques to furnish passive database
mechanisms. Subsequently, in Section 9.3, the evidence of a cost-effective construc-
tion activity is discussed. Finally, Section 9.4 concludes the evaluation.

9.1 Evaluation of the Reference Architecture

It is nowadays agreed that architecture design is too complex that one could establish a
simple set of quality attributes that can be applied mechanically to assess the quality of
an architecture. The main challenge of architecture design is the striving for balances
between understandability of the design, achievement of the required functionality and
business aspects (e.g., time to market, projected lifetime of a system etc.) [BCK98].
These typically conflicting interests must be weighted differently from case to case in
order to assess an architecture. Hence we will discuss in Section 9.1.1 the coherence of
the reference architecture, in Section 9.1.2 how it supports the bundling-oriented con-
struction procedure devised for ECASs and finally, in Section 9.1.3, the consequences
of the reference architecture for operational ECA Systems.

9.1.1 Coherence

An architecture obviously must be complete and correct to meet all requirements and
runtime constraints of the respective system. Both criteria are fulfilled in our context.
Completeness has been achieved by transforming a comprehensive model of unbun-
dled ADBMSs systematically into the reference architecture of ECASs. The adoption
of a formal architecture definition language to describe the architecture enabled us to
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reason about the anticipated behaviour of the system and the correctness of the archi-
tecture.

The assurance of completeness and correctness is mandatory but not sufficient to
achieve proper quality. In that sense, the achievement ofconceptual integrityis con-
sidered as the most important architecture quality attribute [Bro95]. This means that
there must be an underlying theme or vision that unifies the design of the system at
all levels – the architecture should do similar things in a similar way in order to be
easy to grasp. Understandability, however, is very difficult to measure; it has been ad-
vocated that each level of an architectural description should consist of three to seven
entities, because the human perceptive system is naturally able to comprehend aggre-
gates of up to around seven entities simultaneously [BAMS93, Bro84]. We feel that
we achieved a satisfying conceptual integrity for the reference architecture by applying
the architecture styles as patterns to simplify and streamline the design. Moreover, the
organization of an ECAS as an interpreter indicates good understandability, because it
provides an architectural level that enables an ADBI to cope merely with a restricted
set of components to solve a specific problem.

9.1.2 Architectural Qualities Discernible at Construction Time

The effectiveness of the FRAMBOISE approach depends to a large extent on the ability
to make separately developed components of the system work together correctly (so-
called integrability [BCK98]) and on the ability to reuse the structure of ECA Systems
or some of their components in future ECASs. Furthermore, the reference architecture
forms a basis to get subsystem and component design off ground.

System Integrability

The integrability of a system depends on the external complexity of the components
as well as their basic interaction mechanisms and protocols. Since a software architec-
ture determines the partitioning of a system, it influences these aspects directly. The
reference architecture contributes to the integrability of the ECA Systems as the cho-
sen architecture styles enable us to design highly cohesive components that collaborate
with a few other components by means of precise interaction patterns. Distinct tasks
of active database functionality such as rule execution cycle, condition evaluation etc.
are placed into distinct components so that a component has typically just one specific
responsibility. Thus the reference architecture prepares the ground to specify narrow
and concise component interfaces which promote integrability further.

Reusability

The reference architecture is designed up front for reuse by enabling the construction
of a broad range of ECASs. Therefore the reusability of the reference architecture is
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not a primary issue to be qualified1, but the reusability of the architectural components.
On an architectural level, the reusability of a component depends on how tightly cou-
pled it is with other components. The components in the reference architecture are
rather loosely coupled even though most of them interact with the rulebase. However,
due to the chosen blackboard architecture style, the rulebase invokes its associated
components implicitly. Besides being related to the rulebase, each component must
know about maximally one other component. A component in the pipeline does not
even know the identity of their upstream and downstream filters.

Subsystem Design

The reference architecture is also a means to determine concrete software components
and their implementations. Even though the component provision is dominated by
technical features, it is foreseeable that architectural aspects will remain an issue.
Components and connectors are decomposed into further subcomponents and the de-
sign of new elements (e.g., system-specific connectors) must be checked for properties
such as the local absence of deadlocks. The strong cohesion of the components and
their loose coupling induced by the reference architecture facilitates the design of sub-
systems because the designer can mostly focus on local architectural decisions. The
architecture description language WRIGHT is for its part a useful vehicle to support
the further design activities. Hierarchical decomposition of architectural elements can
be expressed by means of WRIGHT so that it is feasible to achieve a consistent sub-
system design. Correspondingly, the reference architecture can be transformed into
system architecture specifications of specific ECA Systems.

9.1.3 Architectural Impacts on Operational ECA Systems

ECA System should interfere as little as possible with the encompassing applications
and the DBMSs. Therefore, once an ECAS is in operation, it must process event
signals and execute rules in a most efficient manner in order to minimize blocking of
the triggering transactions. Furthermore the ECAS must be highly available in order to
prevent that the system formed by the applications, the DBMS and the ECAS crashes
on account of the latter’s failure. Finally, operational ECA Systems may undergo
revisions due to maintenance activities so that its modifiability must be considered
also at the architectural level.

Performance

High reusability and integrability do not come for free. The isolation of functionality
that makes pipes and filters so modifiable often leads to poor performance results.
Filters typically force the lowest common denominator of data representation (e.g.,
an ASCII stream). Should the input stream be transformed into tokens, every filter

1In fact, only the modifiability of the architecture is of interest; cf. Sec. 9.1.3.
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pays this parsing/unparsing overhead . If a filter cannot produce its output until it
has received all of its input, it will require an input buffer of unlimited size, because
bounded buffers could cause deadlocks. Finally, each filter operates as a separate
process or procedure call, thus incurring some overhead each time it is invoked. We
chose this architecture style despite of these shortcomings, because they can be coped
with in the following ways: By means of typed pipes we can mitigate the parsing
overhead to some extent. Furthermore, we can assert that all associated tokens (i.e.,
event and rule instances) come along without delay so that a filter should not wait
overly long in order to process them together. Finally, it is conceivable that an event
or rule instance does not contain large data structures, thus enabling rather efficient
forwarding.

Availability

Typical architectural techniques to ensure high availability of a system are the installa-
tion of redundant componentry that takes over in the case of failure, careful attention
to error reporting and the provision of special components such as time-out monitors.
For the following reasons none of these issues is adequate for the reference architecture
of ECAS. Providing a priori redundant componentswithin an ECAS might compro-
mise efficient rule processing, whereas the redundant installation of complete ECAS
is rather an aspect of the system architecture of a concrete system. Error reporting
depends on logging or monitoring facilities whose incorporation into a system is easy
to achieve (e.g., as additional filters in the pipeline), but for the sake of clarity they are
omitted here. Nevertheless, the careful separation of concerns applied in the reference
architecture promotes a good testability and reusability which enable the provision of
a less error-prone system that in turn lengthens the mean time to failure.

Modifiability

From an architectural viewpoint it is relevant whether maintenance activities will pre-
cipitate a modification of one component only, of more than one component or of
something more drastic such as a change of the underlying architectural style. Due to
the loose coupling of the components and the clean partitioning of the functionality,
chances are high that modifications can be traced down to single components as long
as the rulebase is not affected. Adapting the rulebase will affect practically all compo-
nents of an ECAS which may often result in a complete reconstruction of the ECAS.
We consider this specific case as acceptable, because such a modification is usually
induced by a revision of the knowledge model of the ECAS which in turn suggests
that the most fundamental requirements of the respective ECAS change.

However, the modifiability of an ECAS has one severe restriction insofar as it is
not feasible to introduce components as filters in the pipeline that depend on the state
of another filter, because there is no way for filters to cooperatively interact to solve
a problem. In such a situation one is required to replace the pipes and filter style by
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another architecture style. We consider the risk that such a drastic change occurs as
small, because the pipes and filters architecture corresponds very well to the batch
mentality devised for rule processing [PD98].

Nevertheless, the question remains to what extent the reference architecture itself
is modifiable in order to cope with future requirements. Actually, such a revision im-
plies not only the introduction of one or several new components, but the application
of different architecture styles. In such a case, the designer can fall back to the con-
ception of an ECAS as an interpreter and perform an architecture refinement like the
one exercised in this chapter. Hence the virtual machine architecture provides a meta
architecture that assists an ADBI to adapt the reference architecture of ECA Systems
to specific purposes.

9.2 Constructing Active Database Management Systems
with FRAMBOISE

ECA Systems are not ADBMSs but provide active database functionality in conjunc-
tion with mostly passive DBMSs. In order to evaluate whether it is feasible to furnish
ECA Systems for a broad range of DBMSs, we discuss in this section how FRAM-
BOISE combines with the various approaches of Component DBMSs (CDBMS), re-
lying on the classification of component DBMSs elaborated in [DG00]. Since it is
feasible to enhance nowadays commercially available DBMSs to some extent, they
are also covered by this classification.

9.2.1 Plug In Components

This category of CDBMSs comprises so-calleduniversal servers. The core functional-
ity of such a system is principally formed by a fully functional DBMS that implements
all standard functionality expected from a DBMS. Nonstandard features or functional-
ity not yet supported can then be plugged into this “core DBMS”. The DBMS architec-
ture defines a number of plugs through which the services of the respective components
are invoked and that the component must implement.

Implementing with FRAMBOISE an ECAS that acts as a plug-in component pro-
viding active database functionality is principally easy to conceive. The various adapters
of an ECAS (e.g. event detection, action execution etc.) implement then the respective
plugs. However, in practice the opportunities to provide ECAS are limited. To date
all systems in this category are based on the relational data model and existing rela-
tional DBMSs such as IBM’s DB2 UDB [IBM95], Informix Universal Server [Inf98],
Oracle8 [Ora99] and Predator [Ses98]. The components in this kind of CDBMS are
typically families of base and abstract data types or implementations of some ”tradi-
tional” DBMS function such as new index structures. To our very best knowledge none
of these DBMSs provides any specific plugs to provide active database functionality
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that goes beyond the trigger facilities that are nowadays actually an SQL standard.

As a consequence, it is difficult to implement ECAS that provide rule execution
within the triggering transaction (e.g.,immediate or deferred coupling modes). In prin-
ciple one has to implement workarounds that block the triggering transaction and com-
municate when to unblock and which operation must be executed as next. Even though
such “tricks” are feasible, they usually bear the risk of dangerous side effects such as
blocking due to a deadlock or even crashing the DB server. In fact, it was possible to
implement immediate and deferred rule execution for a well-known relational DBMS
by exploiting its trigger mechanisms, event signalling and the interprocess commu-
nication facilities. However, we experienced also the downside, i.e., side effects that
blocked the database server or unexpectedly aborted the triggering transactions, so that
we wouldn’t easily recommend this technique in a productive environment.

Nevertheless, FRAMBOISE can add value to nowadays plug-in CBDMSs. As
shown in [HK97, SB99a] it makes sense to provide rule execution engines that process
ECA rules asynchronously. Since virtually all DBMSs offer asynchronous event no-
tification, it is feasible to provide an ECAS with a functionality corresponding to the
one of TriggerMan [HK97], whereby such an ECAS can provide additionally complex
event detection.

However, the provision of plugs to add active database mechanisms that enable
synchronous rule processing is not an unrealistic idea. Nowadays object relational
DBMSs furnish a considerable amount of functionality to provide such plugs. For in-
stance extension mechanisms to integrate third-party program routines into the DBMS
such as the function manager of Oracle 8 [Ora99]. These facilities provide a safe ex-
ecution environment that allocates specific (eventually DBMS external) address space
to these routines and restrict their access to specific resources. Such an environment to
execute external programs in the context of a database transaction could also serve as
a basis for plugs to add active database functionality.

These plugs correspond basically to the database event detection, condition evalu-
ation and action execution connector. Thereby action execution and query evaluation
takes place under control of the core DBMS, eventually by involving user-defined
functions in a safe execution environment as described above. This “sandbox” must
additionally be able to handle time-outs in order to unblock the triggering transaction
if the rule execution engine does not respond timely.

The format of the information (e.g., transaction context or user authentication) to
be interchanged between the core DBMS and the rule execution engine can rely on
standards. For instance, theJavaTM 2 Platform, Enterprise Editionstandard [Java]
for developing multi-tier enterprise applications (J2EE) specifies standard interfaces
between a transaction manager and the parties involved in a distributed transaction
system. Similar specifications are used to encapsulate authenticated user information.
Hence the provision of “active database plugs” for an ECAS-like facility can to a large
extent rely on techniques that are already available.
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9.2.2 Database Middleware

These approaches are devised to integrate existing data stores into DBMSs. Thereby
the data items are left under control of their original management systems while they
are integrated into a common-style DBMS framework. It is, for instance, feasible to
integrate existing data stores into query processing or transaction management of an
entire system.

Since the systems integrated by means of the database middleware will typically
exhibit different capabilities, (e.g., query languages with varying power) the basic
problem of database middleware is that it needs to understand the data formats and
functions of each data source. Thus the basic architecture of database middleware
introduces a common intermediate format into which local data formats can be trans-
lated. Components are introduced that are able to perform this kind of translation. Fur-
thermore, common interfaces and protocols define how the database middleware and
the components interact (e.g., in order to retrieve the data from a data store). These
components (usually called wrappers) are also able to transform requests issued via
these interfaces (e.g., queries) into requests understandable by the external system.

FRAMBOISE can be applied to furnish active database functionality as database
middleware, because ECA Systems are principally outlined to provide active database
functionality for different data models and different data sources. The system-specific
idiosyncrasies are transformed by means of the respective connectors (e.g., DB event
detection) into the ECAS internal representations. Thus these connectors act effec-
tively as wrappers.

It is furthermore conceivable to provide ECAS that rely directly on the common
format provided by the standards of the database middleware. For instance OLE DB
[Bla96] provides an open and extensible collection of interfaces that enable applica-
tions to have uniform access to data stored in DBMS and non-DBMS information
containers. OLE DB, based on the Microsoft Component Object Model (COM), de-
fines the system-level programming interfaces that encapsulate various DBMS compo-
nents. These interfaces extend Microsoft’s OLE/COM object services framework with
database functionality. The OLE DB functional areas include data access and updates
(so-calledrowsets), query processing, schema information, transactions, security and
data source notifications(watches).

The latter are designed to enable clients to be notified about changes to the under-
lying data source, originated by other concurrent clients running under different trans-
action contexts in either read committed or read repeatable isolation levels2. Upon a
notification, the client can request a list of changes from the respective data provider.
Applications of data source notifications are, for instance, the support of replicated
data or materialized views. The client code may then represent an incremental refresh
algorithm that is triggered by the notification.

2Data source notifications under read uncommitted or serializable isolation levels are not feasible in
order to prevent unpredictable results or to avoid that uncommitted data is read by concurrent transac-
tions.
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Notifications in OLE DB define a basic mechanisms on which to implement active
database behaviour. Due to the strong transaction isolation levels of the data source
modifications it is, however, only feasible to implement rule execution that corresponds
to the causally dependent coupling mode. This is, after all, not a major restriction in
this context, recalling that the main purpose of database middleware is the integration
of various, principally independent data sources. The data sources themselves should
not be modified. Hence database middleware does not introduce active database func-
tionality in the data source. Active database behavior should be executed in the inte-
gration layer formed by that the middleware. Thus the causally dependent coupling is
practically the only coupling mode that makes sense.

Providing an ECAS that interoperates with an OLE DB environment is quite a
straight-forward procedure. The abstractions provided by the OLE DB enable an
ADBI to infer the knowledge and rule execution model of the prospective ECAS.
For the actual implementation of the ECAS one can rely on commercially available
software building blocks, that bridge between OLE DB and the Java virtual machine.
Hence it is not overly difficult to map the idiosyncrasies of OLE DB within the respec-
tive connectors to the FRAMBOISE specific counterparts.

9.2.3 Database Services

This type of componentized DBMS is characterized by a service-oriented view of
database functionality [GD98]. All DBMS functionality is provided instandardized
unbundled form. Plugs are service definitions, components are service implementa-
tions.

A prominent example are the CORBA Services [Gro95] which leverage several
DBMS tasks to general object systems. The services are standardized by the Object
Management Group (OMG) which was formed in 1989 as an industry consortium, with
the aim of addressing the problems of developing interoperable, reusable and portable
distributed applications for heterogeneous systems, based on standard object-oriented
interfaces. These problems are addressed by introducing an architectural framework
with supporting detailed interface specifications. OMG’s role is that of an interface
and functionality specifier; it does not develop software itself.

The reference model identifies and categorizes the components, interfaces and pro-
tocols that constitutes the Object Management Architecture (OMA). As depicted in
Figure 9.1 there are four categories of components, namelyobject services, common
facilities, domain interfacesandapplication interfaces. These are linked by an object
request broker (ORB) component which enables transparent communication between
clients and objects. Domain and application interfaces are not relevant in the current
context, because they provide abstractions for various domain-specific application do-
mains or even external application interfaces that users develop. Such domain specific
standards are also referred to asvertical standards[DW99], contrasting to the so called
horizontal standardsthat establish a domain independent, common mechanism for ba-
sic services such as security, transactions etc. The horizontal standards are defined in
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Object Request Broker (ORB)

CORBA Services

Figure 9.1: Object Management Architecture

the CORBA Services and to some extent in the common facilities. The former princi-
pally provide value-added services to facilitate the development of distributed applica-
tions. Among others, CORBA services comprehend classical database services such as
persistence, transactions, concurrency control, queries and even (asynchronous) event
notifications. In theory it is feasible to put together a component DBMS by gluing
together various CORBA services.

It suggests itself to situate here also a service for active database mechanisms and
– in our context – to implement it by means of FRAMBOISE as an ECAS. Indeed the
OMA proposes also aRule Management Facilitywhich is, however, not considered
as an CORBA (object) service but is situated in thecommon facilities. This group of
services is formed by four major complexes:user interface, information management,
system managementandtask management[OHE96]. The latter is in turn decomposed
into several facilities, one of them is the rule management facility. It is defined as
follows “The rule management facility provides for declarative event-condition-action
rule specification and processing. Rule management involves the acquisition, man-
agement and execution of a rule” [tas95]. The proposal refers explicitly to ADAMS
functionality but includes also features like inference mechanisms, deductive rules and
certainty factors.

Even though FRAMBOISE is not conceived to provide inference mechanisms, it
enables the provision of an ECAS that implements quite a powerful rule management
facility. In principle, such a “CORBA ECAS” has to provide event detection connec-
tors that interoperate with the CORBA event service, condition evaluation connectors
that are specific for the CORBA query service, whereas the action execution connec-
tors invoke operations on CORBA objects. The CORBA transaction and concurrency
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services enable the ECAS to perform rule execution within a transaction context. Fi-
nally, the rulebase component of the ECAS can rely on the CORBA persistence service
to manage rulebase persistence. An ECAS does not represent a mere rule execution
engine, but comes along with various tools to define rules and manage rulebases as
discussed in Chapter 8. Finally, the component model chosen for our implementa-
tion is also applicable in a CORBA environment since Java/CORBA Bridges are also
available.

As far as it is known, the proposal of the rule management facility never went be-
yond the inception phase, i.e., there has never been anything more than a rough outline
of this facility. In that situation, the FRAMBOISE construction process enables an
ADBI that intends to provide an ECAS that implements a rule management facility,
to fill the gap between ”wish list” [tas95] and the ramifications of a concrete imple-
mentation (e.g., rule execution models which are not at all addressed in this document,
coupling modes and their significance for the interaction with the CORBA transaction
service etc). FRAMBOISE gives the ADBI a means to analyze in detail what kind of
rule functionality is required and what the implications fur the prospective system are.
Hence it is feasible to achieve a detailed specification of an ECAS in a way as it is not
provided by the OMG proposal.

9.2.4 Configurable DBMSs

Configurable DBMSs are similar to the DBMS services addressed in section 9.2.3.
They rely accordingly on unbundled DBMS tasks that can be mixed and matched to
provide specific database support. However, configurable DBMS take this idea one
step further because the set of services offered by them is not standardized and fixed.
Instead it is planned from the outset to adapt service implementations to new require-
ments or to define new services whenever needed. As a consequence, components that
provide the same DBMS task can vary not only in their implementations for the same
interface, but also in their interfaces for the same tasks.

The application of FRAMBOISE in such an environment is straightforward. On
the one hand the reference architecture (cf. Sec. 9.1.3) ensures that ECA Systems can
be adapted upon modifications in a configurable DBMS.

On the other hand, the overall construction system FRAMBOISE is compatible
with the principal techniques of configurable CDBMSs. The construction process that
defines how to proceed in order to obtain a (configurable) DBMS with the desired
functionality typically consists of several phases including requirements analysis de-
sign, implementation and integration of multiple subsystems. For each type of sub-
system a dedicated construction process is defined and integrated into the enclosing
DBMS-construction process. The instance bundling process as described in Section
5.3 corresponds effectively to the construction process of such a subsystem and can
be integrated in the enclosing DBMS-construction process. Thereby rule extraction
and constraint analysis of the FRAMBOISE process will be part of the overall require-
ments analysis phase, whereas system integration will become part of the embracing

158



www.manaraa.com

system integration.
Typically for the construction of each subsystem, a dedicated specification lan-

guage is used to define its functionality. These specifications serve as input to subsystem-
specific implementation phases, which in turn use techniques such as the generation of
subsystems or the configuration of subsystems out of reusable already existing com-
ponents. The FRAMBOISE specification language (cf. Sec. 8.1) fully corresponds to
such a subsystem-specific specification language.

Finally the complete set of methods to engineer components are also part of the
bundling process (cf. Sec. 5.3). Thus FRAMBOISE enables an ADBI to (re-) de-
sign an ECAS in depth in order to cope with novel requirements at a configurable
DBMS. Thus it is a realistic vision that FRAMBOISE might become part of a DBMS
construction kit that enables the provision of configurable DBMSS.

9.3 Cost-Effectiveness

Evaluating the cost-effectiveness of a construction system that exists exclusively as a
research environment is a rather speculative endeavor. In fact, our research prototypes
were neither developed nor used within budged constraints that would surface cost-
ineffectiveness mercilessly. Nevertheless it is adequate to discuss some key issues that
give evidence whether our approach principally enables a cost-effective construction
of active database functionality.

Since the provision of CDBMSs is never a simple endeavor, it is a fair assumption
to require skilled software engineers for that task. Under that circumstances, the cost-
effectiveness of a DBMS construction system depends on the effort an engineer has to
make in order to master such a highly specialized technology.

The unbundling process enabled us to furnish a prototypical implementation of the
component framework (cf. Appendix C) with quite limited human resources within
a controllable schedule. The fact that the lion’s share of the prototype has been im-
plemented by one single person made it virtually impossible to exercise extreme pro-
gramming (XP) as proposed in Section 5.2.2. Aspects of extreme programming that
are exclusively related to human interaction (e.g., pair programming, collective own-
ership of code) are of paramount importance in the overall XP methodology, but they
were simply not applicable in our context. It was, however, feasible to follow the XP
development cycle (cf. Sec. 5.2.1) according to the modifications proposed in Section
5.2.2. For instance the so-calledplanning game3 underlay the prototype implemen-
tation activities, whereby the reference architecture (Chap. 6) were effectively useful
as a system metaphor. The programming tasks were implemented by consequently
implementing the unit tests up front by means of theJUnit test framework[obj] thus
enabling a constant code-refactoring. As a consequence, it could be verified that it is
effectively practical to map the construction process of an active database construction

3an XP strategy to maximize the value of software produced by a team under uncertainty [Bec00]

159



www.manaraa.com

framework onto the XP methodology. Thus it can be inferred that it is actually feasible
to furnish an active database construction system according to the procedures proposed
in this thesis in a cost-effective way.

The following key elements of FRAMBOISE are a basis that ensure subsequently
a cost-effective construction of ADBMSs: By means of the reference architecture,
the specification language and the component specification that relies on the com-
ponent schema, provide a set of interlocking concepts that enable a software engi-
neer to quickly grasp the essence of active database technology as it is furnished by
FRAMBOISE. Furthermore, the bundling process and its associated techniques give
the ADBI a guideline to build an ECAS and how to cope with unforeseen issues (by
referring to the unbundling process). Such a road map is a further prerequisite of a
cost-effective software provision.

Finally, software reuse is a central theme of any cost-effective construction system
(cf. Sec.3.3). Software reuse occurs in FRAMBOISE at all levels of abstraction:

1. At the component framework levelby reusing artifacts that apply for entire
ECAS such as architectures, specifications, test cases, generators that bundle
ECAS etc.

2. At thecomponent levelby deploying prefabricated components.

3. At the implementation levelby reusing software building blocks like modules,
class or function libraries, source code etc. which are reused to implement com-
ponents.

Our experiences underpin the assertion of that ECA Systems can be constructed
cost-effectively. In order to check the development cycles of the component frame-
work, we used FRAMBOISE to realize operational ECA-Systems for three commer-
cial DBMSs. The requirements specification for each ECAS has been established
by characteristics of the appropriate DBMS and by the required functionality for the
knowledge and execution model. This functionality is drawn from a financial applica-
tion4 requiring advanced active functionality. The experiences were very encouraging,
as the effort to built the ECASs offering advanced functionality similar to SAMOS was
small compared to building SAMOS initially.

Implementing these applications, we experienced that the framework and the op-
erational ECASs proved to be an effective complement of the proprietary event no-
tification/detection mechanisms provided by the commercial DBMSs. Applying the
respective raw event notification facilities burdens various tasks to the application de-
velopers, e.g., programming demon processes to perform blocking reads of the event
queues, event signals are to be numbered, user-defined information is to be packed in
strings that are part of the notification etc. Much of this programming effort could

4This application had initially been developed for our ”home-made” active object-oriented DBMS
SAMOS [GGD95a] aiming at the demonstration of the rich event handling and rule processing facilities
of SAMOS.
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be significantly reduced because the respective operations were embedded in special-
ized components. The subsequent reuse of these system-specific enhancements was
remarkable. Moreover, FRAMBOISE added value to the respective event notification
facilities as they are seamlessly integrated in a powerful rule processing facility i.e,
the respective ECAS, that gives the opportunity to combine (and recombine) the event
notifications in a uniform way with the execution of various activities. Thus, we ex-
perienced that the overall procedure to specify and construct an ECAS leveraged a
considerable amount of know-how in active database technology to these mostly pas-
sive DBMSs.

9.4 Conclusion

The feasibility of the approach elaborated in this thesis has principally been verified
by means of prototypical implementations (cf. App. C). They rely on the JavaBeansTM

[Javb] technology so that component prototypes were implemented as Java Beans and
were in turn connect by means of InfoBus as discussed in Section 7.3.4. Further fa-
cilities of the JavaBeans component infrastructure enable component developers to
furnish specific (visual) builder tools to inspect, customize and connect the Java Bean
components they develop. Accordingly a component repository (cf. Sec. 8.2.3) proto-
type was implemented as well as tools to assemble components into coherent ECASs
(cf. Sec. 8.3).

Henceforth (equally prototypical) ECA Systems were provided, furnishing active
database functionality as plug-ins (cf. Sec. 9.2.1) for nowadays commercially avail-
able, mostly passive DBMSs. By means of this prototypes it was feasible to proof that
it is basically feasible to furnish active database functionality by means of a compo-
nent framework as proposed in this thesis. The prototypes gave furthermore evidence
for the cost-efficiency of this approach as discussed in 9.3.

However, prototypes have their limitations. For instance, due to the complexity of
even a prototypical implementation of the component framework, it is virtually im-
possible to assess whether eventual runtime inefficiencies are to be attributed to the
component infrastructure (e.g., Java virtual machine), simple deficiencies in the proto-
type code or whether they are in fact an architectural weakness. The evaluations made
in this chapter are therefore complementary to the prototypes to fully demonstrate the
viability of FRAMBOISE.

Hence we conclude that our goals have been achieved, because it is feasible to im-
plement a component framework according to the principles elaborated in our work.
The reference architecture of the ECAS leverages the implemented software proto-
types into effective ECA Systems by fostering the sound, flexible and comprehensive
provision of active database mechanism (Sec. 9.1). FRAMBOISE is equally versatile
enough to be applied in a broad range of scenarios as discussed in Section 9.2. Fi-
nally there is evidence that the construction of the ECA systems mechanisms can be
achieved in quite a cost-effective manner.
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Chapter 10

Conclusion

This chapter concludes the thesis. It gives a summary, identifies contributions of the
thesis and describes open issues and directions for future work.

10.1 Summary and Contributions

This thesis investigates in the systematic provision of sophisticated active mechanisms
(so-called ECA Systems) in database or database-related environments and proposed
an engineering approach – named FRAMBOISE [FGD98] – to construct them in a
cost-effective way. Regarding that there is no actual construction theory in the domain
of active database technology, the detailed elaboration of such a construction system
is new to this field.

Unlike other approaches [BDD+95, HK97, BFL+97], FRAMBOISE conceives the
provision of active database facilities as a software engineering process and addresses
all relevant phases for the construction. Approaches that start with a toolbox approach
right away or offer a fixed architecture are less likely to succeed in terms of high reuse
pay-off. The thesis identified and specified three major processes and modeled them
in detail, namely

1. a process that drives the provision of the construction system itself (i.e., meta
bundling process),

2. another one (instance unbundling process) to consolidate the variety of active
database technology into a coherent ensemble and to furnish the building blocks
of the subsequent systems.

3. Finally a guide to the actual construction of the active database services has been
established by means of the instance bundling process.

The activities performed according to the meta bundling process, enable the identifi-
cation of a component-based approach as the appropriate technology and to establish
a concise notion thereof. Regarding the ambiguous conception of component software
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that exist nowadays, clarifying the application of this paradigm for a specialized con-
text is a further contribution. The same applies to definition of a specific architecture
model that has equally been performed as a a specific activity of the meta bundling
process.

A major contribution of this thesis is the systematic unbundling of ADBMSs in
order to gain reusable software components. Thereby the following achievements were
made:

• A reference modelof unbundled ADBMSs was installed and transposed system-
atically into areference architectureof an active database service.

• Due to the formal specification, the reference architecture was verified for con-
sistency and served as a detailed foundation for the subsequent component pro-
vision.

• A procedure to systematically generalize software components was devised.

• A substantial amount of the components was implemented prototypically, using
the Java BeansTM [Javb].

In order to ensure an efficient construction of active database services, the thesis pro-
poses

• a language to specify the requirements of the ECA Systems,

• a schema to classify the software components in order to retrieve them according
to ADBMS specific requirements and

• an environment to support an ADBI in the assembly of an ECA System.

The approach elaborated in this thesis enables the construction of of active database
services that interoperate with a wide range of systems, namely

• with commercially available, mostly passive, database management systems, as
well as

• with novel approaches to implementDBMSs which have equally a componen-
tized architectureand allow users to add components.

Finally, the construction system FRAMBOISE represents afully-fledged compo-
nent frameworksituated outside the domain of graphical user interface building. Since
such component frameworks arestill rare [Szy97, Mau00], the systematic procedure
applied in this thesis to work out a precise and detailed set of interlocking concepts
to specify, design, verify and classify software architectures, components and their
ingredients at various levels of abstraction is a major contribution of its own.
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10.2 Directions for Future Work

Elaborating a database construction system like FRAMBOISE is a complex piece of
work that requires investigations in various directions. Due to the broadness of the
topic, several issues could not be addressed in this thesis and a few restrictive assump-
tions had to be made.

A first restriction in this thesis has been the focus oncentralizedADBMSs. This
is justified in order to solve simpler problems first. However, a construction system
intended for practical applications has to support distributed rule execution as well.

Aspects of concurrency control and recovery are treated in accordance with the
functionality specified for the Java Transaction APITM (JTA) [Jav01]. Hence, these
aspects are treated reasonably by FRAMBOISE as long as the triggering events are
simple (database) events and the actions of the rules have no side effects that are visible
outside the database. The complex rule execution models, in particular when parallel
rule execution takes place, require more sophisticated transaction models (e.g., nested
transactions) than the flat transactions covered by the JTA specification. Even though
concurrency control and recovery in ADBMS is not yet fully understood, it might be
highly interesting to enhance FRAMBOISE with more sophisticated mechanisms.

FRAMBOISE is conceived as a second-order component framework [Szy97] (cf.
Sec. 4.1.3) whereby components form the first tier and skeleton(s) of ECA Systems the
second. It would be highly interesting to pursue that approach and to investigate in a
third-order component framework that uses FRAMBOISE as one building block. The
interoperation design provided by the various connectors that relate an ECA System
with the DBMS and external services are a adequate first step in that direction, but
further work is still necessary

A final subject for future work is the completion of the construction support envi-
ronment. A complete implementation is beyond a single thesis, since such an imple-
mentation needs many person years of work. Once such a supported system is fully
implemented, more experience and quantitative results can be obtained. It were equally
feasible to realize more comprehensive active database applications. This application
experience, however, is needed to underpin research activities concerning the applica-
bility of active database mechanisms (e.g., the development of tools to design and the
maintenance of large rulebases). Furthermore, the provision of credible application
examples fosters the application of active database technology.
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Appendix A

The Architecture Definition Language
WRIGHT

This appendix gives an overview over the principal features of the architecture descrip-
tion language WRIGHT [AG94, AG97, All97].

A.1 The Structure of WRIGHT

Wright is built around the basic architectural abstractions ofcomponents, connectors
andconfigurations, providing explicit structural notations for each of these elements.
The general notion of component is formalized as localized independent computation
whereas a connector is defined as a pattern of interaction among components.

A.1.1 Components

A component description consists of thecomputationpart and a number ofports that
represent the interface of the component. Each port defines a set of interactions in
which the respective component may participate. For example, a component repre-
senting a (database- ) server might have two ports, one to respond to client’s queries
and another that a database administrator would use to supervise the DBMS (cf. Fig.
A.1). The computation part describes what the component actually does. The com-
putation carries out the operations defined for the ports and shows how they are tied
together to form a coherent whole. A port specification indicates two aspects of a com-
ponent. First, it indicates some aspects of the components behaviour. In this view, the
ports specification indicates the properties that the component must have if it is viewed
through the lense of that particular port. Thus, the port becomes apartial specification
of the respective component. The computation gives a more complete specification of
what is really done.
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ComponentDBServer =
Port Session [Session protocol]
Port Admin [Admin protocol]
Computation [Server specification]

Figure A.1: The Structure of a Component Description

A.1.2 Connectors

Connector descriptions consist of a set ofroles (constituting the connectors interface)
and the so-calledglue. Each role defines the behavior of one component in the interac-
tion, whereas the glue defines how the roles will interact with each other (cf. Fig. A.2).
A role is a partial specification of a connector corresponding to the ports of a compo-
nent, whereas the glue represents the full (i.e., to the extent required at the architecture
level) behavioral specification.

ConnectorC-S-connector =
RoleClient [client protocol]
RoleServer [server protocol]
Glue [glue protocol]

Figure A.2: The Structure of a Connector Description

A.1.3 Configurations

In order to describe complete system architectures, the components and connectors of
a WRIGHT description are combined into aconfiguration. A configuration is a collec-
tion of component and connector instances combined via connectors as shown in Fig.
A.3. A configuration is completed by describing theattachments. The attachments de-
fine the topology of the configuration by specifying which components participate in
which interactions. This is done by associating a component’s port with a connector’s
role.

The attachment declarations bring together each of the elements of an architectural
description. The component carries out a computation, part of which is a particular
interaction specified by a port. That port is attached to a role that indicates what rules
the port must follow in order to be a valid participant in the interaction specified by
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Configuration ClientServer
ComponentDBServer =

Port Session [Session protocol]
Port Admin [Admin protocol]
Computation [Server specification]

ComponentClient =
Port DBRequest [Request protocol]
Computation [Application specification]

ConnectorC-S-connector =
RoleClient [client protocol]
RoleServer [server protocol]
Glue [glue protocol]

Instances
DBMS: DBServer
Application, Administrator: Client
cs1, cs2: C-S-connector

Attachments
DBMS.Sessionascs1.Server
DBMS.Adminascs2.Server
Application.DBRequestascs1.Client
Administrator.DBRequestascs2.Client

End ClientServer.

Figure A.3: A Simple Client-Server Configuration
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the connector. The glue of the connectors then determine how the computations are
combined to form a single, larger computation.

Finally, configurations are applied to specifyhierarchicaldescriptions where com-
ponents or connectors are in turn composed of architectural subsystems. In this case,
the computation of a component or the glue of a connector are represented by an archi-
tectural description itself. Hence the architectural subsystem is described as a config-
uration in the same way as indicated above. In addition, however, for a component the
nested description has an associated set of bindings, which define how the unattached
port names on the inside are associated with the port names (correspondingly for con-
nectors: role names on the inside are identified with the role names on the outside).

A.1.4 Formalizing Architecture Styles in WRIGHT

WRIGHT supports the formal description of architectural styles (cf. Sec. 4.2.2) by
means of so-calledstyle definitions. A style definition basically defines a set of prop-
erties that are shared by the configurations that are members of this style. These prop-
erties can be expressed by means of so-called interface definitions, parameterizable
connector and component definitions as well as specific style constraints.

Interface Types

An architectural style can restrict the interface of its architectural elements to specific
properties. In order to describe these restrictions and to simplify definition, a WRIGHT
description can introduce so-calledinterface types. They can be used either as the
port of a component or as the role of a connector. In the latter case, the interface
type represents a constraint on the port interfaces that may be used in this role. The
following example specifies the “call and return” behavior of a procedure call.

Interface Type TProcedureCall =call→ return?resultu §

In principle this interface definition means that the caller initiates the sequence (indi-
cated by means of the overbar) and waits until the callee returns a result. Alternatively
a procedure call might not be invoked at all and terminates therefore with an “empty
operation” expressed by means of the symbol§. Note that the formalism to express
this behavior is presented in greater detail in Section A.2.

Parameterization

In order to expand a description of systems to families of systems, WRIGHT allows
to parameterize descriptions i.e., a type description is permitted to leave “holes” in the
description to be filled when the type is instantiated. WRIGHT permits any part of
the description of a type to be replaced with aplaceholder. So the type of a role, a
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computation, the name of an interface etc. are all a parameterizable. In the follow-
ing example, the computation part of a component is parameterized, whereas the port
definitions are specified by means of an interface type.

ComponentSingleSessionDBServer (C: Computation) =
Port Session = TProcedureCall
Port Admin = TProcedureCall
Computation = C

Furthermore, component and connector descriptions can be parameterized bynum-
ber, i.e., by indicating a range of integers. Thus, the number of parameters can be used
to control the number of particular kinds of ports or roles that can appear. A port or
role description that can have multiple copies is indicated by specifying a range of
integers as a subscript to its name, as shown in the following example that allows a
database server component to have multiple identical session ports.

ComponentMultipleSessionDBServer (nSession: 1 . . . ) =
Port Session1...nSources= open→Wait4Event
Port Admin = TProcedureCall
Computation = ControlInfo.open→
∀ i ∈ 1 . . . nSources• Sessioni.open→ . . .

Note that the parameter number of a component or a connector is set at instantiation
time and cannot be changed during execution time. Dynamic architectures (i.e., those
in which components appear or disappear) are either modeled by including all po-
tential elements in a configuration or by describing each configuration as a different
architecture [All97].

Constraints

Finally, a style definition may include explicit constraints which are based on first-
order predicate logic. The constraints refer to the following sets and operators:

• Components:The set of components in the configuration.

• Connectors:The set of connectors in the configuration.

• Attachments:The set of attachments in the configuration. Each attachment is
represented as a pair of pairs((comp,port), (Conn, Role)).

• Name(e):The name of elemente, wheree is a component, connector, port or
role.

• Type(e):The type of elemente.
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• Ports(c): The set of ports of componentc.

• Computation(c):The computation of componentc.

• Roles(c): The set of roles of connectorc.

• Glue(c): The glue of connectorc.

In addition, any type that has been declared as a part of the style’s vocabulary may
be referred to by name. An example summarizing a simple style definition is given in
Figure A.4.

StyleClientServerStyle
Interface Type TInvoke = [Call service and wait for result]
Interface Type TExec = [Execute service and return]
ConnectorProcedureCall =

Port Caller = TInvoke
Port Callee = TExec
Glue [glue protocol]

Constraints
∀ c ∈ Connectors• Type(c) = ProcedureCall ∧
∀ c ∈ Components; p : Port | p ∈ Ports(c) • Type(p) = TInvoke ∨

Type(p) = TExec
End ClientServerStyle.

Figure A.4: A Simple Client-Server Style

A.2 Behaviour Specifications

The behaviour and coordination of components and connectors is specified in WRIGHT
using a notation based on the process algebra CSP (“Communicating Sequential Pro-
cesses”). This formalism was originally devised by C.A.R. Hoare [Hoa85] as a nota-
tion and theory to describe systems as a number of elements (processes) which operate
independently1 and communicate with each other over well-defined channels. Besides
being a notation for describingconcurrent systems, CSP is also a collection of mathe-
matical models and reasoning methods to understand this notation.

1The restriction that processes must be sequential was removed between 1978 and 1985, but the
name CSP was already established.
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A.2.1 Processes and Events in CSP

The basic notion of CSP is the so-calledprocesswhich stands for the behaviour pattern
of any real world object that acts and interacts with other objects according to a specific
manner. The behavior pattern of such an object is described by means ofeventswhich
are abstractions of actions performed in the real world.

Processes are denoted in CSP inupper-casewords and events inlower-casewords.
The set of names of events which are considered as relevant for a specific process is
called itsalphabet. The alphabet of a process P is a permanent property of this process
and is denotedαP, e.g.,αCONVERSATION= {talk, listen}
There is a distinction between event classes and event occurrences. A specific event
may occur any number of times. An event name denotes an event class.

The actual occurrence of each event in the life of an object is regarded as an in-
stantaneous or atomic action without duration. In order to model extended or time-
consuming operations, they are represented by a pair of events the first denoting the
start of an action and the second denoting its completion.

In many situations it is useful to categorize events into special event groups. Thus
there is a special class of events known ascommunicationwritten with an infix dot
such asc.ν wherec is the name of the channel on which the communication takes
place andν is the value of the message which is passed over the channel.

A.2.2 Traces

A trace of the behaviour of a process is a finite sequence of symbols recording the
events in which the process has engaged up to some moment in time. It is denoted as
a sequence of symbols, separated by commas and enclosed in angular brackets.
〈start, finish〉 consists of two events,start followed byfinish
〈〉 is the empty sequence containing no events
The actual behaviour of a process is represented by means of a finite sequence of

symbols recording the events in which the process has engaged up to some moment in
time. This string of symbols – addressed astrace– is denoted as a list of the respective
symbols which are separated by commas. The list is enclosed in angular brackets. For
instance, the trace〈start, finish〉 consists of two events,start followed byfinish.

A.2.3 Prefixing

The operator→ allows toprefixprocesses by events which belong to the alphabet of
the respective process. For instance, given an eventx and a processP regarding that
x ∈ αP thenx→ P is the process which is willing to communicate first the eventx and
afterwards behaves likeP. Note that a prefixed process is a restriction of the original
process permitting only those traces overαP that start with the eventx. A prefixed
processQ whereQ = (x → P) recurs to P. The concepts of prefixing and recursion
enable the description of processes with a single possible stream of behaviour.
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A.2.4 Combining Processes

In order to describe processes whose behaviour is influenced by interaction with their
environment (represented by other processes), the language CSP includes various prim-
itive operators for parallel composition, nondeterministic as well as deterministic choice.
This makes for an elegant notation in which the problems of concurrency, nondeter-
minism and abstraction can be addressed separately. The language also provides con-
structs for modeling deadlock, recursion and program relabeling. The basic operators
are:

The notationP 2 Q represents anexternal choicebetween the two processesP
andQ. If the environment is prepared to interact with P but not Q, then the choice is
resolved in favor of P and vice versa.P u Q is an internal choice betweenP andQ;
the outcome of this choice is nondeterministic.

A.2.5 Refinement

The refinement relationship is a way to compare processes that are not identical. It
principally guarantees that one process satisfies all of the properties of another, possi-
bly as well as some other properties of its own. It is defined as follows:

A processP = (αP,FP,DP) is a refinement of a processQ = (αQ,FQ,DQ) written
Q⊆ P iff αP = αQ ∧ FP ⊆ FQ ∧ DP ⊆ DQ.

In a nutshell, a refinement relation ensures that the traces of P are a subset of Q’s
traces.

A.2.6 Applying CSP to WRIGHT

CSP is applied in WRIGHT to specify the behaviour of the ports, computations, roles
and glues. The latter are basically considered as CSP processes which are defined by
means of an expression written in the CSP algebra.

WRIGHT extends CSP in some minor syntactic ways. Thus, it distinguishes be-
tween initiating and observingan event. An event that is initiated by a process is
written with an overbar. Moreover, WRIGHT introduces the special event§ =

√
→

STOP, because the CSP special event
√

typically only occurs in a process that halts
immediately after indicating termination. For example, a connector that represents a
procedure call could be described as follows:

ConnectorProcedureCall =
RoleCaller =call→ return?resultu §
RoleDefiner =call→ return!result2 §
Glue = Caller.call→ Definer.call→ Glue

2 Definer.return?result→ Caller.return!result→ Glue
2 §
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Two fractions take part in this interaction whose behaviour is defined as a CSP process
by means of the role “Caller” and “Definer”. On the one hand there is a component
that invokes the procedure, expressed by the overbarcall. Afterwards it waits for the
procedure to return the results. Therefore the eventreturn?result is written without
an overbar. Note that the role Caller uses the non-deterministic choice operatoru
because the caller decides itself whether a procedure is invoked or not. On the other
hand the “Definer” provides the procedure and executes it exclusively on an external
invocation. Thuscall is written without an overbar, contrastingly toreturn!resultand
the expression uses the deterministic choice operator2. Since the “Glue” process
ties the various roles together it must point out which role’s event is indicated in any
situation. This is achieved by rewriting the role’s events in the Glue expression as
communication events whereby the respective role is considered as the channel.

The behaviour of the components is specified correspondingly i.e., ports are treated
alike the roles and the computation process alike the glue.

A.3 Validating Architectural Descriptions

Architectural specifications written in WRIGHT enable a designer to check a system
for consistency and completeness. This analysis is conducted according to a series
of eleven tests that are described informally in following paragraphs. The complete
formal description can be found in [All97]. Note that we indicate in parentheses the
language construct for which each test applies.

Port-Computation Consistency (Component) A port specification must be apro-
jectionmust be a projection of the Computation of its associated component under the
assumption that all other port interfaces are obeyed by the environment.

Connector Deadlock-Free (Connector) This test is applied to detect inconsisten-
cies between participants in an interaction and the coordination of that interaction by
the glue of a connector. Basically the combination of the roles and the connector’s
glue must be deadlock-free.

Roles Deadlock-Free (Role) By requiring that each of the roles in a connector must
be deadlock-free, this test avoids that role specifications are internally inconsistent.

Single Initiator (Connector) In order to avoid control conflicts, for every event in a
connector type specification exactly one of the roles or the glue must initiate the event.

Initiator Commits (Any Process) This rule ensures that the initiate (expressed by
means of an overbar over the event) and the observe notations are used consistently.
Thus if a process initiates an event, then it must commit to that single event without any
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influence by the environment. For example a process likeInvalid = e→ P 2 f → Q
does not obey this rule.

Parameter Substitution (Instance) An instance declaration of a parameterized type
must result in a valid non-parameterized type when the actual parameters are substi-
tuted for the formal parameters. Thus inconsistencies like name clashes for syntactic
placeholders (e.g., port or role names) are avoided when parameterized instances are
declared in a configuration.

Range Check (Instance) A numeric parameter must be no smaller than the lower
bound, if declared and no larger than the upper bound, if declared.

Port-Role Compatibility (Attachment) Only compatible ports and roles may be at-
tached to each other. That means that the port must handle all of the observed events
that the role specifies, but may possibly handle more. The other way round the port
may only initiate events that are in the alphabet of the port, it is, however, not manda-
tory that a port initiates all events a role could process.

Style Constraints (Configuration) The predicates for a style must be true for a
configuration declared to be in that style.

Style Consistency (Style) There must be at least one configuration that satisfies the
constraints of a style.

Attachment Completeness (Configuration) If a port or role is unattached then it
must not depend on observing particular events and it must not be able to initiate any
events. Thus every unattached port or role in a configuration must be compatible with
the process that simply halts, i.e,§.
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Appendix B

The Syntax of the Specification
Language

This Appendix presents the complete syntax of specification language introduced in
Section 8.1. The syntax is expressed in the extend Backus Naur Form (EBNF).

ECAS ::= ’ECAS’ ECASName KnowledgeModel ExecutionModel
RuleManagementAspects DBMSAspects.

ECASName ::= Name ’:’.

KnowledgeModel ::= ’KNOWLEDGE_MODEL’ EventTypes
ConditionCharacteristics
ActionCharacteristics.

EventTypes ::= ’EVENTS’ EventSource {EventSource}.

EventSource ::= (External|Database)|’COMPOSITE’)’;’.

External ::= ’EXTERNAL’ ( ’system’|’clock’|’abstract’).

Database ::= ’DATABASE’ (’modification’|’method’|
’transaction’|’error’).

ConditionCharacteristics ::= ’CONDITIONS’ Coupling
ConditionEvaluation.

ConditionEvaluation ::= ’EVALUATION’ [’DBMS’]
[’stand-alone’]’;’.
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ActionCharacteristics ::= ’ACTIONS’ Coupling ActionExecution.

ActionExecution ::= ’EXECUTION’ [’DBMS’] [’stand-alone’]’;’.

Coupling ::= TemporalCoupling TransactionCoupling

TemporalCoupling ::= ’COUPLINGS’ [’immediate’]
[’deferred’] ’;’.

TransactionBinding ::= ’BINDINGS’ [’current’][’detached’]’;’.

ExecutionModel ::= ’EXECUTION_MODEL’ CyclePolicy
[ConflictResolution]
RuleConsumptionPolicy
TerminationPolicy.

CyclePolicy ::= ’CYCLE_MODE’ (’recursive’ |
’non-interruptable’)’;’.

ConflictResolution ::= ’CONFLICT_RESOLUTION’
(’none’| [’absolutpriority’]
[’relativepriority’]
[’FIFO’] [’LIFO’] |
’all’)’;’.

RuleConsumptionPolicy ::= ’RULE_CONSUMPTION’ ’local’|’global’ ’;’.

TerminationPolicy ::= ’TERMINATION’ (’granted’|’limit’)’;’.

RuleManagementAspects ::= ’RULE_MANAGEMENT’ Adaptability.

Adaptability ::= ’ADAPTABILITY’ (’compile-time’ | ’runtime’)’;’.

DBMSAspects ::= ’DBMS’ Datamodel DML_Statements Interpreter.

Datamodel ::= ’DATAMODEL’ (’relational’ | ’objectoriented’)’;’.

DML_Statements ::= ’DML_STATEMENTS’ (’interruptable’ |
’non-interruptable’)’;’.

Interpreter ::= ’INTERPRETER’ (’yes’|’no’)’;’.

Name :: = Letter { Letter | Digit}.
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Letter ::= ’a’|’b’|’c’|’d’|’e’|’f’|’g’|’h’|’i’|’j’|’k’|’l’|’m’|
’n’|’o’|’p’|’q’|’r’|’s’|’t’|’u’|’v’|’w’|’x’|’y’|’z’|
’A’|’B’|’C’|’D’|’E’|’F’|’G’|’H’|’J’|’K’|’L’|’M’|’N’|
’O’|’P’|’Q’|’R’|’S’|’T’|’U’|’V’|’W’|’X’|’Y’|’Z’.

Digit ::= ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’.
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Appendix C

The FRAMBOISE Prototype

The FRAMBOISE Component Framework has been implemented as an experimen-
tal prototype [Flo84] tovalidatethe concepts elaborated in this thesis. The prototype
comprehends basically the class framework to develop components i.e., the FRAM-
BOISE Development Framework (FDF) as presented in Chapter 7.4, components to
build representative ECA Systems as well as a set of tools to to assemble ECA Sys-
tems according to Fig. 8.1.

This appendix presents the FRAMBOISE prototype in order to illustrate how the
construction system is applied by an ADBI. The next Section sketches in which form
the prototype is obtained by an ADBI. Subsequently Sections C.2 until C.3 describe
how an ECAS is formed out of prefabricated components. Finally, Section C.4 dis-
cusses the facilities to define and edit the rulebase of an ECA System.

C.1 Packaging and Installation

The FRAMBOISE Prototype relies on the JavaBeanTM Technology [Javb] and has been
implemented according to the principles discussed in Chapter 7. Thusall elements
of the prototype – including the development tools – are basically implemented as
JavaBeans.

The Java classes underlying the various JavaBeans are packaged inJava Archives,
i.e., so-calledJAR Filesthat are part of the standard Java infrastructure. A JAR is a
compressed file that allows principally to archive arbitrary files, but its main purpose is
to package related class files, serialized1 Java Beans and other resources. This scheme
allows multiple beans to be packaged in a single JAR file, providing a convenient way
to share common class files.

Thus FRAMBOISE components are delivered as a number of Java Archives and
the FRAMBOISE prototype is basically installed by adding them to the so-called class

1The so-calledObject Serializationis a Java mechanism that supports the encoding of objects, and
the objects reachable from them, into a stream of bytes as well as the complementary reconstruction of
the object graph from the stream. Serialization is among other things used for lightweight persistence.
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path2. Upon installation an ADBI can construct ECAS as discussed in the subsequent
sections.

C.2 Specification of the Functionality of the ECA Sys-
tem

Constructing an ECAS starts with specifying it by means of the specification language
presented in Section 8.1. The FRAMBOISE prototype comprises a specification lan-
guage compiler to process ECAS specifications. The specification compiler generates
an initial version of a so-calledconfiguration filethat basically describes which ingre-
dients (e.g., JavaBeans, resource files, database schemas etc.) form the prospective
ECA System.

In order to assist the ADBI in specifying the ECAS, the workbench3 offers a spec-
ification editor as depicted in Figure C.1. The sliders on top enable the ADBI to select

Figure C.1: The FRAMBOISE Specification Editor

2This Java specific term refers to an environment variable that tells Java tools and applications where
to find third-party and user-defined classes, i.e., classes that are not Java extensions or part of the Java
platform.

3All facilities to construct ECA Systems are actually bundled into one tool that has been named as
ADBI’s Workbench.
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the various aspects of the ECAS specification in order to determine their facets as
shown in this example for the rule execution model. The specification editor gives
the ADBI opportunity to check the specification for inconsistencies (e.g., recursive
rule cascades even though action execution cannot be interrupted to perform the re-
cursion). It is furthermore feasible to invoke the specification compiler in order to
generate a configuration file. The latter is subsequently processed by the configuration
manager.

C.3 Configuring an ECAS

The configuration manager enables an ADBI to browse the component repository and
to connect components into a coherent ECAS. The user interface of the configuration
manager is shown in Figure C.2. On the left hand the structure of the ECASs under

Figure C.2: The FRAMBOISE Component Manager

construction is displayed in a tree-like manner. A node in this tree represents a spe-
cific component of the ECAS. By unfolding such a node the subcomponents of the
component represented by this node are displayed.

A node that is selected has the information about the respective component dis-
played on the panel on the right hand. This panel is specific for each component and is
built out of specialized classes that belong to the respective Bean. The JavaBeans stan-
dard [Javb] establishes various classes and interfaces that help visual design tools to
use beans in a design environment. Among other things, there are so-calledcustomizer
classesthat are furnished by a Bean implementor to provide a complete custom GUI
for customizing a target Java Bean.
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The example in Figure C.2 displays a Bean implementing a working memory. The
editor panel on the right side is actually the customizer of this Bean and requires here
the ADBI define the limit of cascading rules.

The button “Check”, invokes the configuration manager validate whether all re-
quired components are configured properly. Furthermore the the Configuration Man-
ager enables the ADBI to generate an ECAS on account of the actual configuration.
Generating an ECAS consists of the following activities:

• Creation and serialization of JavaBean instances.

• Creation the configuration file with the necessary runtime information to initial-
ize the ECA System (e.g., loading the appropriate Bean instances and connecting
them to the InfoBus, cf. Sec. 7.3.4) at startup.

• Packaging all building blocks in a ECAS specific JAR.

• Creation of the necessary directory structure.

• Creation of an (empty) rulebase.

An ECA System furnished by the FRAMBOISE Prototype is equally a prototype that
runs as multi-threaded application inoneJava virtual machine in order to avoid wicked
interprocess communications.

Note that an ADBI eventually has to furnish novel components before an ECAS
can be configured. Thus the FDF is a part of the prototype so that the provision of a
new component is is performed as described in Chapter 7.

C.4 Define the Rulebase

Once the construction of an ECAS is achieved, one has to define its rulebase. For that
purpose an interactive rulebase editor is furnished that provides graphical interfaces
for inserting into, deleting from and querying the rulebase. It displays individual rules,
events, conditions and actions in different windows and establishes relationships be-
tween them. For example consider a ruleAdjustAccounts that is displayed in a
rule editor as shown in Figure C.3. The constituents of this rule, namely an event called
UpdateSalaryAccount , the conditionoddDistibution and an action named
adjustAccounts and their coupling modes are shown in the panel below the list
displaying the names of all rule definition in this rulebase. Once again this panel is not
a fixed building block of the rulebase editor but it is actually a customizer of the rule
definition bean and is therefore dynamically loaded on account of the ECAS’ configu-
ration file. Clicking on the buttons on the left side opens a specific editor of each rule
constituent. For example the buttonE opens the event editor for the event as shown
in Figure C.4. The upper part of the event editor is a list of all events in this rulebase
accompanied by a list of all rulenames in which the selected event appears. Those
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Figure C.3: The FRAMBOISE Rule Editor
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Figure C.4: The FRAMBOISE Event Editor
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visual elements are applicable for all event definitions ,and are therefore a fixed part of
the event editor.

Below is the customizer for the respective event definition. In the example the
eventUpdateSalaryAccount applies for relational DBMSs, i.e., it is signalled
after an update of a table namedSalatryAccount .

In order to define a new event, a list of all event types that are applicable for this
ECAS is displayed. The ADBI determines the event type by selecting one element of
this list. Afterwards this panel is replaced by the appropriate customizer.

Conditions and Actions are equally implemented as Java Beans thereby relying
on the design pattern [GHJV95]command. In a nutshell, beans representing ac-
tions implement a common interface calledIAction that defines a method named
execute() 4. A class furnishing a concrete action overwrites this method which is
at the proper point of time invoked by the ECAS.

A concrete action class can then be loaded dynamically as any Java class by the
Java virtual machine at runtime from the ECAS.

4Conditions obey a similar convention by implementing a common interface that define a method
returning a boolean value.
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Appendix D

Acronyms

ADBS Active Database System

ADBI Active Database Implementor

API Application Programming Interface

CDBMS Component Database Management System

CORBA Common Object Request Broker Architecture

CSP Communicating Sequential Processes

COM Component Object Model

COP Component Oriented Programming

CRUD Create Read Update Delete

DBMS Database Management System

DML Data Manipulation Language

ECA Event Condition Action

FRAMBOISE A Framework Using Object-Oriented Technology
for Supplying Active Mechanisms

IDL Interface Definition Language

J2EE Java 2 Platform Enterprise Edition

JTA Java Transaction API

OLE Object Linking and Embedding

OMA Object Management Architecture

OMG Object Management Group

RDL Rule Definition Language

UML Unified Modeling Language

XP Extreme Programming
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ming. In M. Mülhäuser, editor,Special Issues in Object-Oriented Pro-
gramming - ECOOP96. dpunkt Verlag, Heidelberg, 1996.
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